| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srapart.a |  |-  ( ph -> A = ( ( subringAlg ` W ) ` S ) ) | 
						
							| 2 |  | srapart.s |  |-  ( ph -> S C_ ( Base ` W ) ) | 
						
							| 3 |  | dsid |  |-  dist = Slot ( dist ` ndx ) | 
						
							| 4 |  | slotsdnscsi |  |-  ( ( dist ` ndx ) =/= ( Scalar ` ndx ) /\ ( dist ` ndx ) =/= ( .s ` ndx ) /\ ( dist ` ndx ) =/= ( .i ` ndx ) ) | 
						
							| 5 | 4 | simp1i |  |-  ( dist ` ndx ) =/= ( Scalar ` ndx ) | 
						
							| 6 | 5 | necomi |  |-  ( Scalar ` ndx ) =/= ( dist ` ndx ) | 
						
							| 7 | 4 | simp2i |  |-  ( dist ` ndx ) =/= ( .s ` ndx ) | 
						
							| 8 | 7 | necomi |  |-  ( .s ` ndx ) =/= ( dist ` ndx ) | 
						
							| 9 | 4 | simp3i |  |-  ( dist ` ndx ) =/= ( .i ` ndx ) | 
						
							| 10 | 9 | necomi |  |-  ( .i ` ndx ) =/= ( dist ` ndx ) | 
						
							| 11 | 1 2 3 6 8 10 | sralem |  |-  ( ph -> ( dist ` W ) = ( dist ` A ) ) |