Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
2 |
|
srapart.s |
|- ( ph -> S C_ ( Base ` W ) ) |
3 |
|
ovex |
|- ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) e. _V |
4 |
|
fvex |
|- ( .r ` W ) e. _V |
5 |
|
ipid |
|- .i = Slot ( .i ` ndx ) |
6 |
5
|
setsid |
|- ( ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) e. _V /\ ( .r ` W ) e. _V ) -> ( .r ` W ) = ( .i ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
7 |
3 4 6
|
mp2an |
|- ( .r ` W ) = ( .i ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
8 |
1
|
adantl |
|- ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) |
9 |
|
sraval |
|- ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
10 |
2 9
|
sylan2 |
|- ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
11 |
8 10
|
eqtrd |
|- ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
12 |
11
|
fveq2d |
|- ( ( W e. _V /\ ph ) -> ( .i ` A ) = ( .i ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
13 |
7 12
|
eqtr4id |
|- ( ( W e. _V /\ ph ) -> ( .r ` W ) = ( .i ` A ) ) |
14 |
5
|
str0 |
|- (/) = ( .i ` (/) ) |
15 |
|
fvprc |
|- ( -. W e. _V -> ( .r ` W ) = (/) ) |
16 |
15
|
adantr |
|- ( ( -. W e. _V /\ ph ) -> ( .r ` W ) = (/) ) |
17 |
|
fv2prc |
|- ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) |
18 |
1 17
|
sylan9eqr |
|- ( ( -. W e. _V /\ ph ) -> A = (/) ) |
19 |
18
|
fveq2d |
|- ( ( -. W e. _V /\ ph ) -> ( .i ` A ) = ( .i ` (/) ) ) |
20 |
14 16 19
|
3eqtr4a |
|- ( ( -. W e. _V /\ ph ) -> ( .r ` W ) = ( .i ` A ) ) |
21 |
13 20
|
pm2.61ian |
|- ( ph -> ( .r ` W ) = ( .i ` A ) ) |