| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srapart.a |
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
| 2 |
|
srapart.s |
|- ( ph -> S C_ ( Base ` W ) ) |
| 3 |
|
sralemOLD.1 |
|- E = Slot N |
| 4 |
|
sralemOLD.2 |
|- N e. NN |
| 5 |
|
sralemOLD.3 |
|- ( N < 5 \/ 8 < N ) |
| 6 |
3 4
|
ndxid |
|- E = Slot ( E ` ndx ) |
| 7 |
4
|
nnrei |
|- N e. RR |
| 8 |
|
5re |
|- 5 e. RR |
| 9 |
7 8
|
ltnei |
|- ( N < 5 -> 5 =/= N ) |
| 10 |
9
|
necomd |
|- ( N < 5 -> N =/= 5 ) |
| 11 |
|
5lt8 |
|- 5 < 8 |
| 12 |
|
8re |
|- 8 e. RR |
| 13 |
8 12 7
|
lttri |
|- ( ( 5 < 8 /\ 8 < N ) -> 5 < N ) |
| 14 |
11 13
|
mpan |
|- ( 8 < N -> 5 < N ) |
| 15 |
8 7
|
ltnei |
|- ( 5 < N -> N =/= 5 ) |
| 16 |
14 15
|
syl |
|- ( 8 < N -> N =/= 5 ) |
| 17 |
10 16
|
jaoi |
|- ( ( N < 5 \/ 8 < N ) -> N =/= 5 ) |
| 18 |
5 17
|
ax-mp |
|- N =/= 5 |
| 19 |
3 4
|
ndxarg |
|- ( E ` ndx ) = N |
| 20 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
| 21 |
19 20
|
neeq12i |
|- ( ( E ` ndx ) =/= ( Scalar ` ndx ) <-> N =/= 5 ) |
| 22 |
18 21
|
mpbir |
|- ( E ` ndx ) =/= ( Scalar ` ndx ) |
| 23 |
6 22
|
setsnid |
|- ( E ` W ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) |
| 24 |
|
5lt6 |
|- 5 < 6 |
| 25 |
|
6re |
|- 6 e. RR |
| 26 |
7 8 25
|
lttri |
|- ( ( N < 5 /\ 5 < 6 ) -> N < 6 ) |
| 27 |
24 26
|
mpan2 |
|- ( N < 5 -> N < 6 ) |
| 28 |
7 25
|
ltnei |
|- ( N < 6 -> 6 =/= N ) |
| 29 |
27 28
|
syl |
|- ( N < 5 -> 6 =/= N ) |
| 30 |
29
|
necomd |
|- ( N < 5 -> N =/= 6 ) |
| 31 |
|
6lt8 |
|- 6 < 8 |
| 32 |
25 12 7
|
lttri |
|- ( ( 6 < 8 /\ 8 < N ) -> 6 < N ) |
| 33 |
31 32
|
mpan |
|- ( 8 < N -> 6 < N ) |
| 34 |
25 7
|
ltnei |
|- ( 6 < N -> N =/= 6 ) |
| 35 |
33 34
|
syl |
|- ( 8 < N -> N =/= 6 ) |
| 36 |
30 35
|
jaoi |
|- ( ( N < 5 \/ 8 < N ) -> N =/= 6 ) |
| 37 |
5 36
|
ax-mp |
|- N =/= 6 |
| 38 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
| 39 |
19 38
|
neeq12i |
|- ( ( E ` ndx ) =/= ( .s ` ndx ) <-> N =/= 6 ) |
| 40 |
37 39
|
mpbir |
|- ( E ` ndx ) =/= ( .s ` ndx ) |
| 41 |
6 40
|
setsnid |
|- ( E ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) = ( E ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
| 42 |
7 8 12
|
lttri |
|- ( ( N < 5 /\ 5 < 8 ) -> N < 8 ) |
| 43 |
11 42
|
mpan2 |
|- ( N < 5 -> N < 8 ) |
| 44 |
7 12
|
ltnei |
|- ( N < 8 -> 8 =/= N ) |
| 45 |
43 44
|
syl |
|- ( N < 5 -> 8 =/= N ) |
| 46 |
45
|
necomd |
|- ( N < 5 -> N =/= 8 ) |
| 47 |
12 7
|
ltnei |
|- ( 8 < N -> N =/= 8 ) |
| 48 |
46 47
|
jaoi |
|- ( ( N < 5 \/ 8 < N ) -> N =/= 8 ) |
| 49 |
5 48
|
ax-mp |
|- N =/= 8 |
| 50 |
|
ipndx |
|- ( .i ` ndx ) = 8 |
| 51 |
19 50
|
neeq12i |
|- ( ( E ` ndx ) =/= ( .i ` ndx ) <-> N =/= 8 ) |
| 52 |
49 51
|
mpbir |
|- ( E ` ndx ) =/= ( .i ` ndx ) |
| 53 |
6 52
|
setsnid |
|- ( E ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 54 |
23 41 53
|
3eqtri |
|- ( E ` W ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 55 |
1
|
adantl |
|- ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 56 |
|
sraval |
|- ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 57 |
2 56
|
sylan2 |
|- ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 58 |
55 57
|
eqtrd |
|- ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 59 |
58
|
fveq2d |
|- ( ( W e. _V /\ ph ) -> ( E ` A ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
| 60 |
54 59
|
eqtr4id |
|- ( ( W e. _V /\ ph ) -> ( E ` W ) = ( E ` A ) ) |
| 61 |
3
|
str0 |
|- (/) = ( E ` (/) ) |
| 62 |
|
fvprc |
|- ( -. W e. _V -> ( E ` W ) = (/) ) |
| 63 |
62
|
adantr |
|- ( ( -. W e. _V /\ ph ) -> ( E ` W ) = (/) ) |
| 64 |
|
fv2prc |
|- ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) |
| 65 |
1 64
|
sylan9eqr |
|- ( ( -. W e. _V /\ ph ) -> A = (/) ) |
| 66 |
65
|
fveq2d |
|- ( ( -. W e. _V /\ ph ) -> ( E ` A ) = ( E ` (/) ) ) |
| 67 |
61 63 66
|
3eqtr4a |
|- ( ( -. W e. _V /\ ph ) -> ( E ` W ) = ( E ` A ) ) |
| 68 |
60 67
|
pm2.61ian |
|- ( ph -> ( E ` W ) = ( E ` A ) ) |