Step |
Hyp |
Ref |
Expression |
1 |
|
sralmod.a |
|- A = ( ( subringAlg ` W ) ` S ) |
2 |
1
|
a1i |
|- ( S e. ( SubRing ` W ) -> A = ( ( subringAlg ` W ) ` S ) ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
3
|
subrgss |
|- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
5 |
2 4
|
srabase |
|- ( S e. ( SubRing ` W ) -> ( Base ` W ) = ( Base ` A ) ) |
6 |
2 4
|
sraaddg |
|- ( S e. ( SubRing ` W ) -> ( +g ` W ) = ( +g ` A ) ) |
7 |
2 4
|
srasca |
|- ( S e. ( SubRing ` W ) -> ( W |`s S ) = ( Scalar ` A ) ) |
8 |
2 4
|
sravsca |
|- ( S e. ( SubRing ` W ) -> ( .r ` W ) = ( .s ` A ) ) |
9 |
|
eqid |
|- ( W |`s S ) = ( W |`s S ) |
10 |
9 3
|
ressbas |
|- ( S e. ( SubRing ` W ) -> ( S i^i ( Base ` W ) ) = ( Base ` ( W |`s S ) ) ) |
11 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
12 |
9 11
|
ressplusg |
|- ( S e. ( SubRing ` W ) -> ( +g ` W ) = ( +g ` ( W |`s S ) ) ) |
13 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
14 |
9 13
|
ressmulr |
|- ( S e. ( SubRing ` W ) -> ( .r ` W ) = ( .r ` ( W |`s S ) ) ) |
15 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
16 |
9 15
|
subrg1 |
|- ( S e. ( SubRing ` W ) -> ( 1r ` W ) = ( 1r ` ( W |`s S ) ) ) |
17 |
9
|
subrgring |
|- ( S e. ( SubRing ` W ) -> ( W |`s S ) e. Ring ) |
18 |
|
subrgrcl |
|- ( S e. ( SubRing ` W ) -> W e. Ring ) |
19 |
|
ringgrp |
|- ( W e. Ring -> W e. Grp ) |
20 |
18 19
|
syl |
|- ( S e. ( SubRing ` W ) -> W e. Grp ) |
21 |
|
eqidd |
|- ( S e. ( SubRing ` W ) -> ( Base ` W ) = ( Base ` W ) ) |
22 |
6
|
oveqdr |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` A ) y ) ) |
23 |
21 5 22
|
grppropd |
|- ( S e. ( SubRing ` W ) -> ( W e. Grp <-> A e. Grp ) ) |
24 |
20 23
|
mpbid |
|- ( S e. ( SubRing ` W ) -> A e. Grp ) |
25 |
18
|
3ad2ant1 |
|- ( ( S e. ( SubRing ` W ) /\ x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) ) -> W e. Ring ) |
26 |
|
elinel2 |
|- ( x e. ( S i^i ( Base ` W ) ) -> x e. ( Base ` W ) ) |
27 |
26
|
3ad2ant2 |
|- ( ( S e. ( SubRing ` W ) /\ x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) ) -> x e. ( Base ` W ) ) |
28 |
|
simp3 |
|- ( ( S e. ( SubRing ` W ) /\ x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) ) -> y e. ( Base ` W ) ) |
29 |
3 13
|
ringcl |
|- ( ( W e. Ring /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ( .r ` W ) y ) e. ( Base ` W ) ) |
30 |
25 27 28 29
|
syl3anc |
|- ( ( S e. ( SubRing ` W ) /\ x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) ) -> ( x ( .r ` W ) y ) e. ( Base ` W ) ) |
31 |
18
|
adantr |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> W e. Ring ) |
32 |
|
simpr1 |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. ( S i^i ( Base ` W ) ) ) |
33 |
32
|
elin2d |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
34 |
|
simpr2 |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
35 |
|
simpr3 |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
36 |
3 11 13
|
ringdi |
|- ( ( W e. Ring /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( x ( .r ` W ) ( y ( +g ` W ) z ) ) = ( ( x ( .r ` W ) y ) ( +g ` W ) ( x ( .r ` W ) z ) ) ) |
37 |
31 33 34 35 36
|
syl13anc |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( x ( .r ` W ) ( y ( +g ` W ) z ) ) = ( ( x ( .r ` W ) y ) ( +g ` W ) ( x ( .r ` W ) z ) ) ) |
38 |
18
|
adantr |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> W e. Ring ) |
39 |
|
simpr1 |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> x e. ( S i^i ( Base ` W ) ) ) |
40 |
39
|
elin2d |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
41 |
|
simpr2 |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> y e. ( S i^i ( Base ` W ) ) ) |
42 |
41
|
elin2d |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
43 |
|
simpr3 |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
44 |
3 11 13
|
ringdir |
|- ( ( W e. Ring /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( +g ` W ) y ) ( .r ` W ) z ) = ( ( x ( .r ` W ) z ) ( +g ` W ) ( y ( .r ` W ) z ) ) ) |
45 |
38 40 42 43 44
|
syl13anc |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( +g ` W ) y ) ( .r ` W ) z ) = ( ( x ( .r ` W ) z ) ( +g ` W ) ( y ( .r ` W ) z ) ) ) |
46 |
3 13
|
ringass |
|- ( ( W e. Ring /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
47 |
38 40 42 43 46
|
syl13anc |
|- ( ( S e. ( SubRing ` W ) /\ ( x e. ( S i^i ( Base ` W ) ) /\ y e. ( S i^i ( Base ` W ) ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
48 |
3 13 15
|
ringlidm |
|- ( ( W e. Ring /\ x e. ( Base ` W ) ) -> ( ( 1r ` W ) ( .r ` W ) x ) = x ) |
49 |
18 48
|
sylan |
|- ( ( S e. ( SubRing ` W ) /\ x e. ( Base ` W ) ) -> ( ( 1r ` W ) ( .r ` W ) x ) = x ) |
50 |
5 6 7 8 10 12 14 16 17 24 30 37 45 47 49
|
islmodd |
|- ( S e. ( SubRing ` W ) -> A e. LMod ) |