| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sralmod0.a |  |-  ( ph -> A = ( ( subringAlg ` W ) ` S ) ) | 
						
							| 2 |  | sralmod0.z |  |-  ( ph -> .0. = ( 0g ` W ) ) | 
						
							| 3 |  | sralmod0.s |  |-  ( ph -> S C_ ( Base ` W ) ) | 
						
							| 4 |  | eqidd |  |-  ( ph -> ( Base ` W ) = ( Base ` W ) ) | 
						
							| 5 | 1 3 | srabase |  |-  ( ph -> ( Base ` W ) = ( Base ` A ) ) | 
						
							| 6 | 1 3 | sraaddg |  |-  ( ph -> ( +g ` W ) = ( +g ` A ) ) | 
						
							| 7 | 6 | oveqdr |  |-  ( ( ph /\ ( a e. ( Base ` W ) /\ b e. ( Base ` W ) ) ) -> ( a ( +g ` W ) b ) = ( a ( +g ` A ) b ) ) | 
						
							| 8 | 4 5 7 | grpidpropd |  |-  ( ph -> ( 0g ` W ) = ( 0g ` A ) ) | 
						
							| 9 | 2 8 | eqtrd |  |-  ( ph -> .0. = ( 0g ` A ) ) |