| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sraring.1 |  |-  A = ( ( subringAlg ` R ) ` V ) | 
						
							| 2 |  | sraring.2 |  |-  B = ( Base ` R ) | 
						
							| 3 | 2 | a1i |  |-  ( V C_ B -> B = ( Base ` R ) ) | 
						
							| 4 | 1 | a1i |  |-  ( V C_ B -> A = ( ( subringAlg ` R ) ` V ) ) | 
						
							| 5 |  | id |  |-  ( V C_ B -> V C_ B ) | 
						
							| 6 | 5 2 | sseqtrdi |  |-  ( V C_ B -> V C_ ( Base ` R ) ) | 
						
							| 7 | 4 6 | srabase |  |-  ( V C_ B -> ( Base ` R ) = ( Base ` A ) ) | 
						
							| 8 | 2 7 | eqtrid |  |-  ( V C_ B -> B = ( Base ` A ) ) | 
						
							| 9 | 4 6 | sraaddg |  |-  ( V C_ B -> ( +g ` R ) = ( +g ` A ) ) | 
						
							| 10 | 9 | oveqdr |  |-  ( ( V C_ B /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` A ) y ) ) | 
						
							| 11 | 4 6 | sramulr |  |-  ( V C_ B -> ( .r ` R ) = ( .r ` A ) ) | 
						
							| 12 | 11 | oveqdr |  |-  ( ( V C_ B /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` A ) y ) ) | 
						
							| 13 | 3 8 10 12 | ringpropd |  |-  ( V C_ B -> ( R e. Ring <-> A e. Ring ) ) | 
						
							| 14 | 13 | biimpac |  |-  ( ( R e. Ring /\ V C_ B ) -> A e. Ring ) |