Metamath Proof Explorer


Theorem sratset

Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses srapart.a
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) )
srapart.s
|- ( ph -> S C_ ( Base ` W ) )
Assertion sratset
|- ( ph -> ( TopSet ` W ) = ( TopSet ` A ) )

Proof

Step Hyp Ref Expression
1 srapart.a
 |-  ( ph -> A = ( ( subringAlg ` W ) ` S ) )
2 srapart.s
 |-  ( ph -> S C_ ( Base ` W ) )
3 df-tset
 |-  TopSet = Slot 9
4 9nn
 |-  9 e. NN
5 8lt9
 |-  8 < 9
6 5 olci
 |-  ( 9 < 5 \/ 8 < 9 )
7 1 2 3 4 6 sralem
 |-  ( ph -> ( TopSet ` W ) = ( TopSet ` A ) )