Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( W e. V -> W e. _V ) |
2 |
1
|
adantr |
|- ( ( W e. V /\ S C_ ( Base ` W ) ) -> W e. _V ) |
3 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
4 |
3
|
pweqd |
|- ( w = W -> ~P ( Base ` w ) = ~P ( Base ` W ) ) |
5 |
|
id |
|- ( w = W -> w = W ) |
6 |
|
oveq1 |
|- ( w = W -> ( w |`s s ) = ( W |`s s ) ) |
7 |
6
|
opeq2d |
|- ( w = W -> <. ( Scalar ` ndx ) , ( w |`s s ) >. = <. ( Scalar ` ndx ) , ( W |`s s ) >. ) |
8 |
5 7
|
oveq12d |
|- ( w = W -> ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) = ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) ) |
9 |
|
fveq2 |
|- ( w = W -> ( .r ` w ) = ( .r ` W ) ) |
10 |
9
|
opeq2d |
|- ( w = W -> <. ( .s ` ndx ) , ( .r ` w ) >. = <. ( .s ` ndx ) , ( .r ` W ) >. ) |
11 |
8 10
|
oveq12d |
|- ( w = W -> ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) = ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
12 |
9
|
opeq2d |
|- ( w = W -> <. ( .i ` ndx ) , ( .r ` w ) >. = <. ( .i ` ndx ) , ( .r ` W ) >. ) |
13 |
11 12
|
oveq12d |
|- ( w = W -> ( ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) sSet <. ( .i ` ndx ) , ( .r ` w ) >. ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
14 |
4 13
|
mpteq12dv |
|- ( w = W -> ( s e. ~P ( Base ` w ) |-> ( ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) sSet <. ( .i ` ndx ) , ( .r ` w ) >. ) ) = ( s e. ~P ( Base ` W ) |-> ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
15 |
|
df-sra |
|- subringAlg = ( w e. _V |-> ( s e. ~P ( Base ` w ) |-> ( ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) sSet <. ( .i ` ndx ) , ( .r ` w ) >. ) ) ) |
16 |
|
fvex |
|- ( Base ` W ) e. _V |
17 |
16
|
pwex |
|- ~P ( Base ` W ) e. _V |
18 |
17
|
mptex |
|- ( s e. ~P ( Base ` W ) |-> ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) e. _V |
19 |
14 15 18
|
fvmpt |
|- ( W e. _V -> ( subringAlg ` W ) = ( s e. ~P ( Base ` W ) |-> ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
20 |
2 19
|
syl |
|- ( ( W e. V /\ S C_ ( Base ` W ) ) -> ( subringAlg ` W ) = ( s e. ~P ( Base ` W ) |-> ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
21 |
|
simpr |
|- ( ( ( W e. V /\ S C_ ( Base ` W ) ) /\ s = S ) -> s = S ) |
22 |
21
|
oveq2d |
|- ( ( ( W e. V /\ S C_ ( Base ` W ) ) /\ s = S ) -> ( W |`s s ) = ( W |`s S ) ) |
23 |
22
|
opeq2d |
|- ( ( ( W e. V /\ S C_ ( Base ` W ) ) /\ s = S ) -> <. ( Scalar ` ndx ) , ( W |`s s ) >. = <. ( Scalar ` ndx ) , ( W |`s S ) >. ) |
24 |
23
|
oveq2d |
|- ( ( ( W e. V /\ S C_ ( Base ` W ) ) /\ s = S ) -> ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) = ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) |
25 |
24
|
oveq1d |
|- ( ( ( W e. V /\ S C_ ( Base ` W ) ) /\ s = S ) -> ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) = ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
26 |
25
|
oveq1d |
|- ( ( ( W e. V /\ S C_ ( Base ` W ) ) /\ s = S ) -> ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
27 |
|
simpr |
|- ( ( W e. V /\ S C_ ( Base ` W ) ) -> S C_ ( Base ` W ) ) |
28 |
16
|
elpw2 |
|- ( S e. ~P ( Base ` W ) <-> S C_ ( Base ` W ) ) |
29 |
27 28
|
sylibr |
|- ( ( W e. V /\ S C_ ( Base ` W ) ) -> S e. ~P ( Base ` W ) ) |
30 |
|
ovexd |
|- ( ( W e. V /\ S C_ ( Base ` W ) ) -> ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) e. _V ) |
31 |
20 26 29 30
|
fvmptd |
|- ( ( W e. V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |