Description: The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z . (Contributed by AV, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srg1expzeq1.g | |- G = ( mulGrp ` R ) | |
| srg1expzeq1.t | |- .x. = ( .g ` G ) | ||
| srg1expzeq1.1 | |- .1. = ( 1r ` R ) | ||
| Assertion | srg1expzeq1 | |- ( ( R e. SRing /\ N e. NN0 ) -> ( N .x. .1. ) = .1. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | srg1expzeq1.g | |- G = ( mulGrp ` R ) | |
| 2 | srg1expzeq1.t | |- .x. = ( .g ` G ) | |
| 3 | srg1expzeq1.1 | |- .1. = ( 1r ` R ) | |
| 4 | 1 | srgmgp | |- ( R e. SRing -> G e. Mnd ) | 
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) | |
| 6 | 1 3 | ringidval | |- .1. = ( 0g ` G ) | 
| 7 | 5 2 6 | mulgnn0z | |- ( ( G e. Mnd /\ N e. NN0 ) -> ( N .x. .1. ) = .1. ) | 
| 8 | 4 7 | sylan | |- ( ( R e. SRing /\ N e. NN0 ) -> ( N .x. .1. ) = .1. ) |