Step |
Hyp |
Ref |
Expression |
1 |
|
srg1zr.b |
|- B = ( Base ` R ) |
2 |
|
srg1zr.p |
|- .+ = ( +g ` R ) |
3 |
|
srg1zr.t |
|- .* = ( .r ` R ) |
4 |
|
pm4.24 |
|- ( B = { Z } <-> ( B = { Z } /\ B = { Z } ) ) |
5 |
|
srgmnd |
|- ( R e. SRing -> R e. Mnd ) |
6 |
5
|
3ad2ant1 |
|- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> R e. Mnd ) |
7 |
6
|
adantr |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> R e. Mnd ) |
8 |
|
mndmgm |
|- ( R e. Mnd -> R e. Mgm ) |
9 |
7 8
|
syl |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> R e. Mgm ) |
10 |
|
simpr |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> Z e. B ) |
11 |
|
simpl2 |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> .+ Fn ( B X. B ) ) |
12 |
1 2
|
mgmb1mgm1 |
|- ( ( R e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) |
14 |
|
simpl1 |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> R e. SRing ) |
15 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
16 |
15
|
srgmgp |
|- ( R e. SRing -> ( mulGrp ` R ) e. Mnd ) |
17 |
|
mndmgm |
|- ( ( mulGrp ` R ) e. Mnd -> ( mulGrp ` R ) e. Mgm ) |
18 |
14 16 17
|
3syl |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( mulGrp ` R ) e. Mgm ) |
19 |
15 3
|
mgpplusg |
|- .* = ( +g ` ( mulGrp ` R ) ) |
20 |
19
|
fneq1i |
|- ( .* Fn ( B X. B ) <-> ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) |
21 |
20
|
biimpi |
|- ( .* Fn ( B X. B ) -> ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) |
22 |
21
|
3ad2ant3 |
|- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) |
23 |
22
|
adantr |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) |
24 |
15 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
25 |
|
eqid |
|- ( +g ` ( mulGrp ` R ) ) = ( +g ` ( mulGrp ` R ) ) |
26 |
24 25
|
mgmb1mgm1 |
|- ( ( ( mulGrp ` R ) e. Mgm /\ Z e. B /\ ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) -> ( B = { Z } <-> ( +g ` ( mulGrp ` R ) ) = { <. <. Z , Z >. , Z >. } ) ) |
27 |
18 10 23 26
|
syl3anc |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> ( +g ` ( mulGrp ` R ) ) = { <. <. Z , Z >. , Z >. } ) ) |
28 |
19
|
eqcomi |
|- ( +g ` ( mulGrp ` R ) ) = .* |
29 |
28
|
a1i |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( +g ` ( mulGrp ` R ) ) = .* ) |
30 |
29
|
eqeq1d |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( ( +g ` ( mulGrp ` R ) ) = { <. <. Z , Z >. , Z >. } <-> .* = { <. <. Z , Z >. , Z >. } ) ) |
31 |
27 30
|
bitrd |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> .* = { <. <. Z , Z >. , Z >. } ) ) |
32 |
13 31
|
anbi12d |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( ( B = { Z } /\ B = { Z } ) <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |
33 |
4 32
|
syl5bb |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |