| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgcl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | srgcl.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 4 | 3 | srgmgp |  |-  ( R e. SRing -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 5 | 3 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 6 | 3 2 | mgpplusg |  |-  .x. = ( +g ` ( mulGrp ` R ) ) | 
						
							| 7 | 5 6 | mndass |  |-  ( ( ( mulGrp ` R ) e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) | 
						
							| 8 | 4 7 | sylan |  |-  ( ( R e. SRing /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |