| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srgbinom.s |
|- S = ( Base ` R ) |
| 2 |
|
srgbinom.m |
|- .X. = ( .r ` R ) |
| 3 |
|
srgbinom.t |
|- .x. = ( .g ` R ) |
| 4 |
|
srgbinom.a |
|- .+ = ( +g ` R ) |
| 5 |
|
srgbinom.g |
|- G = ( mulGrp ` R ) |
| 6 |
|
srgbinom.e |
|- .^ = ( .g ` G ) |
| 7 |
|
oveq1 |
|- ( x = 0 -> ( x .^ ( A .+ B ) ) = ( 0 .^ ( A .+ B ) ) ) |
| 8 |
|
oveq2 |
|- ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) |
| 9 |
|
oveq1 |
|- ( x = 0 -> ( x _C k ) = ( 0 _C k ) ) |
| 10 |
|
oveq1 |
|- ( x = 0 -> ( x - k ) = ( 0 - k ) ) |
| 11 |
10
|
oveq1d |
|- ( x = 0 -> ( ( x - k ) .^ A ) = ( ( 0 - k ) .^ A ) ) |
| 12 |
11
|
oveq1d |
|- ( x = 0 -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) |
| 13 |
9 12
|
oveq12d |
|- ( x = 0 -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 14 |
8 13
|
mpteq12dv |
|- ( x = 0 -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 15 |
14
|
oveq2d |
|- ( x = 0 -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 16 |
7 15
|
eqeq12d |
|- ( x = 0 -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 17 |
16
|
imbi2d |
|- ( x = 0 -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 18 |
|
oveq1 |
|- ( x = n -> ( x .^ ( A .+ B ) ) = ( n .^ ( A .+ B ) ) ) |
| 19 |
|
oveq2 |
|- ( x = n -> ( 0 ... x ) = ( 0 ... n ) ) |
| 20 |
|
oveq1 |
|- ( x = n -> ( x _C k ) = ( n _C k ) ) |
| 21 |
|
oveq1 |
|- ( x = n -> ( x - k ) = ( n - k ) ) |
| 22 |
21
|
oveq1d |
|- ( x = n -> ( ( x - k ) .^ A ) = ( ( n - k ) .^ A ) ) |
| 23 |
22
|
oveq1d |
|- ( x = n -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) |
| 24 |
20 23
|
oveq12d |
|- ( x = n -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 25 |
19 24
|
mpteq12dv |
|- ( x = n -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 26 |
25
|
oveq2d |
|- ( x = n -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 27 |
18 26
|
eqeq12d |
|- ( x = n -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 28 |
27
|
imbi2d |
|- ( x = n -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 29 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x .^ ( A .+ B ) ) = ( ( n + 1 ) .^ ( A .+ B ) ) ) |
| 30 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( 0 ... x ) = ( 0 ... ( n + 1 ) ) ) |
| 31 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x _C k ) = ( ( n + 1 ) _C k ) ) |
| 32 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x - k ) = ( ( n + 1 ) - k ) ) |
| 33 |
32
|
oveq1d |
|- ( x = ( n + 1 ) -> ( ( x - k ) .^ A ) = ( ( ( n + 1 ) - k ) .^ A ) ) |
| 34 |
33
|
oveq1d |
|- ( x = ( n + 1 ) -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) |
| 35 |
31 34
|
oveq12d |
|- ( x = ( n + 1 ) -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 36 |
30 35
|
mpteq12dv |
|- ( x = ( n + 1 ) -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 37 |
36
|
oveq2d |
|- ( x = ( n + 1 ) -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 38 |
29 37
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 39 |
38
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 40 |
|
oveq1 |
|- ( x = N -> ( x .^ ( A .+ B ) ) = ( N .^ ( A .+ B ) ) ) |
| 41 |
|
oveq2 |
|- ( x = N -> ( 0 ... x ) = ( 0 ... N ) ) |
| 42 |
|
oveq1 |
|- ( x = N -> ( x _C k ) = ( N _C k ) ) |
| 43 |
|
oveq1 |
|- ( x = N -> ( x - k ) = ( N - k ) ) |
| 44 |
43
|
oveq1d |
|- ( x = N -> ( ( x - k ) .^ A ) = ( ( N - k ) .^ A ) ) |
| 45 |
44
|
oveq1d |
|- ( x = N -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) |
| 46 |
42 45
|
oveq12d |
|- ( x = N -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 47 |
41 46
|
mpteq12dv |
|- ( x = N -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 48 |
47
|
oveq2d |
|- ( x = N -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 49 |
40 48
|
eqeq12d |
|- ( x = N -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 50 |
49
|
imbi2d |
|- ( x = N -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 51 |
|
simpr1 |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> A e. S ) |
| 52 |
5 1
|
mgpbas |
|- S = ( Base ` G ) |
| 53 |
51 52
|
eleqtrdi |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> A e. ( Base ` G ) ) |
| 54 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 55 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 56 |
54 55 6
|
mulg0 |
|- ( A e. ( Base ` G ) -> ( 0 .^ A ) = ( 0g ` G ) ) |
| 57 |
53 56
|
syl |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ A ) = ( 0g ` G ) ) |
| 58 |
|
simpr2 |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> B e. S ) |
| 59 |
58 52
|
eleqtrdi |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> B e. ( Base ` G ) ) |
| 60 |
54 55 6
|
mulg0 |
|- ( B e. ( Base ` G ) -> ( 0 .^ B ) = ( 0g ` G ) ) |
| 61 |
59 60
|
syl |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ B ) = ( 0g ` G ) ) |
| 62 |
57 61
|
oveq12d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( 0 .^ A ) .X. ( 0 .^ B ) ) = ( ( 0g ` G ) .X. ( 0g ` G ) ) ) |
| 63 |
62
|
oveq2d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) = ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) ) |
| 64 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 65 |
1 64
|
srgidcl |
|- ( R e. SRing -> ( 1r ` R ) e. S ) |
| 66 |
65
|
ancli |
|- ( R e. SRing -> ( R e. SRing /\ ( 1r ` R ) e. S ) ) |
| 67 |
66
|
adantr |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R e. SRing /\ ( 1r ` R ) e. S ) ) |
| 68 |
1 2 64
|
srglidm |
|- ( ( R e. SRing /\ ( 1r ` R ) e. S ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 69 |
67 68
|
syl |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 70 |
69
|
oveq2d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1 .x. ( 1r ` R ) ) ) |
| 71 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 72 |
71 64
|
srgidcl |
|- ( R e. SRing -> ( 1r ` R ) e. ( Base ` R ) ) |
| 73 |
71 3
|
mulg1 |
|- ( ( 1r ` R ) e. ( Base ` R ) -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 74 |
72 73
|
syl |
|- ( R e. SRing -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 75 |
74
|
adantr |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 76 |
70 75
|
eqtrd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 77 |
5 64
|
ringidval |
|- ( 1r ` R ) = ( 0g ` G ) |
| 78 |
|
id |
|- ( ( 1r ` R ) = ( 0g ` G ) -> ( 1r ` R ) = ( 0g ` G ) ) |
| 79 |
78 78
|
oveq12d |
|- ( ( 1r ` R ) = ( 0g ` G ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( ( 0g ` G ) .X. ( 0g ` G ) ) ) |
| 80 |
79
|
oveq2d |
|- ( ( 1r ` R ) = ( 0g ` G ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) ) |
| 81 |
80 78
|
eqeq12d |
|- ( ( 1r ` R ) = ( 0g ` G ) -> ( ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) <-> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) ) |
| 82 |
77 81
|
ax-mp |
|- ( ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) <-> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) |
| 83 |
76 82
|
sylib |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) |
| 84 |
63 83
|
eqtrd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) = ( 0g ` G ) ) |
| 85 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
| 86 |
85
|
a1i |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 ... 0 ) = { 0 } ) |
| 87 |
86
|
mpteq1d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 88 |
87
|
oveq2d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 89 |
|
srgmnd |
|- ( R e. SRing -> R e. Mnd ) |
| 90 |
89
|
adantr |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> R e. Mnd ) |
| 91 |
|
c0ex |
|- 0 e. _V |
| 92 |
91
|
a1i |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> 0 e. _V ) |
| 93 |
77 65
|
eqeltrrid |
|- ( R e. SRing -> ( 0g ` G ) e. S ) |
| 94 |
93
|
adantr |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0g ` G ) e. S ) |
| 95 |
84 94
|
eqeltrd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) e. S ) |
| 96 |
|
oveq2 |
|- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
| 97 |
|
0nn0 |
|- 0 e. NN0 |
| 98 |
|
bcn0 |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
| 99 |
97 98
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
| 100 |
96 99
|
eqtrdi |
|- ( k = 0 -> ( 0 _C k ) = 1 ) |
| 101 |
|
oveq2 |
|- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
| 102 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 103 |
101 102
|
eqtrdi |
|- ( k = 0 -> ( 0 - k ) = 0 ) |
| 104 |
103
|
oveq1d |
|- ( k = 0 -> ( ( 0 - k ) .^ A ) = ( 0 .^ A ) ) |
| 105 |
|
oveq1 |
|- ( k = 0 -> ( k .^ B ) = ( 0 .^ B ) ) |
| 106 |
104 105
|
oveq12d |
|- ( k = 0 -> ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) = ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) |
| 107 |
100 106
|
oveq12d |
|- ( k = 0 -> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
| 108 |
1 107
|
gsumsn |
|- ( ( R e. Mnd /\ 0 e. _V /\ ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) e. S ) -> ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
| 109 |
90 92 95 108
|
syl3anc |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
| 110 |
88 109
|
eqtrd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
| 111 |
1 4
|
mndcl |
|- ( ( R e. Mnd /\ A e. S /\ B e. S ) -> ( A .+ B ) e. S ) |
| 112 |
90 51 58 111
|
syl3anc |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( A .+ B ) e. S ) |
| 113 |
112 52
|
eleqtrdi |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( A .+ B ) e. ( Base ` G ) ) |
| 114 |
54 55 6
|
mulg0 |
|- ( ( A .+ B ) e. ( Base ` G ) -> ( 0 .^ ( A .+ B ) ) = ( 0g ` G ) ) |
| 115 |
113 114
|
syl |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( 0g ` G ) ) |
| 116 |
84 110 115
|
3eqtr4rd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 117 |
|
simprl |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> R e. SRing ) |
| 118 |
51
|
adantl |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> A e. S ) |
| 119 |
58
|
adantl |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> B e. S ) |
| 120 |
|
simprr3 |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> ( A .X. B ) = ( B .X. A ) ) |
| 121 |
|
simpl |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> n e. NN0 ) |
| 122 |
|
id |
|- ( ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 123 |
1 2 3 4 5 6 117 118 119 120 121 122
|
srgbinomlem |
|- ( ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) /\ ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 124 |
123
|
exp31 |
|- ( n e. NN0 -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 125 |
124
|
a2d |
|- ( n e. NN0 -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 126 |
17 28 39 50 116 125
|
nn0ind |
|- ( N e. NN0 -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 127 |
126
|
expd |
|- ( N e. NN0 -> ( R e. SRing -> ( ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 128 |
127
|
impcom |
|- ( ( R e. SRing /\ N e. NN0 ) -> ( ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 129 |
128
|
imp |
|- ( ( ( R e. SRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |