Step |
Hyp |
Ref |
Expression |
1 |
|
srgbinom.s |
|- S = ( Base ` R ) |
2 |
|
srgbinom.m |
|- .X. = ( .r ` R ) |
3 |
|
srgbinom.t |
|- .x. = ( .g ` R ) |
4 |
|
srgbinom.a |
|- .+ = ( +g ` R ) |
5 |
|
srgbinom.g |
|- G = ( mulGrp ` R ) |
6 |
|
srgbinom.e |
|- .^ = ( .g ` G ) |
7 |
|
oveq1 |
|- ( x = 0 -> ( x .^ ( A .+ B ) ) = ( 0 .^ ( A .+ B ) ) ) |
8 |
|
oveq2 |
|- ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) |
9 |
|
oveq1 |
|- ( x = 0 -> ( x _C k ) = ( 0 _C k ) ) |
10 |
|
oveq1 |
|- ( x = 0 -> ( x - k ) = ( 0 - k ) ) |
11 |
10
|
oveq1d |
|- ( x = 0 -> ( ( x - k ) .^ A ) = ( ( 0 - k ) .^ A ) ) |
12 |
11
|
oveq1d |
|- ( x = 0 -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) |
13 |
9 12
|
oveq12d |
|- ( x = 0 -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
14 |
8 13
|
mpteq12dv |
|- ( x = 0 -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
15 |
14
|
oveq2d |
|- ( x = 0 -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
16 |
7 15
|
eqeq12d |
|- ( x = 0 -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
17 |
16
|
imbi2d |
|- ( x = 0 -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
18 |
|
oveq1 |
|- ( x = n -> ( x .^ ( A .+ B ) ) = ( n .^ ( A .+ B ) ) ) |
19 |
|
oveq2 |
|- ( x = n -> ( 0 ... x ) = ( 0 ... n ) ) |
20 |
|
oveq1 |
|- ( x = n -> ( x _C k ) = ( n _C k ) ) |
21 |
|
oveq1 |
|- ( x = n -> ( x - k ) = ( n - k ) ) |
22 |
21
|
oveq1d |
|- ( x = n -> ( ( x - k ) .^ A ) = ( ( n - k ) .^ A ) ) |
23 |
22
|
oveq1d |
|- ( x = n -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) |
24 |
20 23
|
oveq12d |
|- ( x = n -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
25 |
19 24
|
mpteq12dv |
|- ( x = n -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
26 |
25
|
oveq2d |
|- ( x = n -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
27 |
18 26
|
eqeq12d |
|- ( x = n -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
28 |
27
|
imbi2d |
|- ( x = n -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
29 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x .^ ( A .+ B ) ) = ( ( n + 1 ) .^ ( A .+ B ) ) ) |
30 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( 0 ... x ) = ( 0 ... ( n + 1 ) ) ) |
31 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x _C k ) = ( ( n + 1 ) _C k ) ) |
32 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x - k ) = ( ( n + 1 ) - k ) ) |
33 |
32
|
oveq1d |
|- ( x = ( n + 1 ) -> ( ( x - k ) .^ A ) = ( ( ( n + 1 ) - k ) .^ A ) ) |
34 |
33
|
oveq1d |
|- ( x = ( n + 1 ) -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) |
35 |
31 34
|
oveq12d |
|- ( x = ( n + 1 ) -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
36 |
30 35
|
mpteq12dv |
|- ( x = ( n + 1 ) -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
37 |
36
|
oveq2d |
|- ( x = ( n + 1 ) -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
38 |
29 37
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
39 |
38
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
40 |
|
oveq1 |
|- ( x = N -> ( x .^ ( A .+ B ) ) = ( N .^ ( A .+ B ) ) ) |
41 |
|
oveq2 |
|- ( x = N -> ( 0 ... x ) = ( 0 ... N ) ) |
42 |
|
oveq1 |
|- ( x = N -> ( x _C k ) = ( N _C k ) ) |
43 |
|
oveq1 |
|- ( x = N -> ( x - k ) = ( N - k ) ) |
44 |
43
|
oveq1d |
|- ( x = N -> ( ( x - k ) .^ A ) = ( ( N - k ) .^ A ) ) |
45 |
44
|
oveq1d |
|- ( x = N -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) |
46 |
42 45
|
oveq12d |
|- ( x = N -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
47 |
41 46
|
mpteq12dv |
|- ( x = N -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
48 |
47
|
oveq2d |
|- ( x = N -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
49 |
40 48
|
eqeq12d |
|- ( x = N -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
50 |
49
|
imbi2d |
|- ( x = N -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
51 |
|
simpr1 |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> A e. S ) |
52 |
5 1
|
mgpbas |
|- S = ( Base ` G ) |
53 |
51 52
|
eleqtrdi |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> A e. ( Base ` G ) ) |
54 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
55 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
56 |
54 55 6
|
mulg0 |
|- ( A e. ( Base ` G ) -> ( 0 .^ A ) = ( 0g ` G ) ) |
57 |
53 56
|
syl |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ A ) = ( 0g ` G ) ) |
58 |
|
simpr2 |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> B e. S ) |
59 |
58 52
|
eleqtrdi |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> B e. ( Base ` G ) ) |
60 |
54 55 6
|
mulg0 |
|- ( B e. ( Base ` G ) -> ( 0 .^ B ) = ( 0g ` G ) ) |
61 |
59 60
|
syl |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ B ) = ( 0g ` G ) ) |
62 |
57 61
|
oveq12d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( 0 .^ A ) .X. ( 0 .^ B ) ) = ( ( 0g ` G ) .X. ( 0g ` G ) ) ) |
63 |
62
|
oveq2d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) = ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) ) |
64 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
65 |
1 64
|
srgidcl |
|- ( R e. SRing -> ( 1r ` R ) e. S ) |
66 |
65
|
ancli |
|- ( R e. SRing -> ( R e. SRing /\ ( 1r ` R ) e. S ) ) |
67 |
66
|
adantr |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R e. SRing /\ ( 1r ` R ) e. S ) ) |
68 |
1 2 64
|
srglidm |
|- ( ( R e. SRing /\ ( 1r ` R ) e. S ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( 1r ` R ) ) |
69 |
67 68
|
syl |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( 1r ` R ) ) |
70 |
69
|
oveq2d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1 .x. ( 1r ` R ) ) ) |
71 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
72 |
71 64
|
srgidcl |
|- ( R e. SRing -> ( 1r ` R ) e. ( Base ` R ) ) |
73 |
71 3
|
mulg1 |
|- ( ( 1r ` R ) e. ( Base ` R ) -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
74 |
72 73
|
syl |
|- ( R e. SRing -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
75 |
74
|
adantr |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
76 |
70 75
|
eqtrd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) ) |
77 |
5 64
|
ringidval |
|- ( 1r ` R ) = ( 0g ` G ) |
78 |
|
id |
|- ( ( 1r ` R ) = ( 0g ` G ) -> ( 1r ` R ) = ( 0g ` G ) ) |
79 |
78 78
|
oveq12d |
|- ( ( 1r ` R ) = ( 0g ` G ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( ( 0g ` G ) .X. ( 0g ` G ) ) ) |
80 |
79
|
oveq2d |
|- ( ( 1r ` R ) = ( 0g ` G ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) ) |
81 |
80 78
|
eqeq12d |
|- ( ( 1r ` R ) = ( 0g ` G ) -> ( ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) <-> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) ) |
82 |
77 81
|
ax-mp |
|- ( ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) <-> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) |
83 |
76 82
|
sylib |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) |
84 |
63 83
|
eqtrd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) = ( 0g ` G ) ) |
85 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
86 |
85
|
a1i |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 ... 0 ) = { 0 } ) |
87 |
86
|
mpteq1d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
88 |
87
|
oveq2d |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
89 |
|
srgmnd |
|- ( R e. SRing -> R e. Mnd ) |
90 |
89
|
adantr |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> R e. Mnd ) |
91 |
|
c0ex |
|- 0 e. _V |
92 |
91
|
a1i |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> 0 e. _V ) |
93 |
77 65
|
eqeltrrid |
|- ( R e. SRing -> ( 0g ` G ) e. S ) |
94 |
93
|
adantr |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0g ` G ) e. S ) |
95 |
84 94
|
eqeltrd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) e. S ) |
96 |
|
oveq2 |
|- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
97 |
|
0nn0 |
|- 0 e. NN0 |
98 |
|
bcn0 |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
99 |
97 98
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
100 |
96 99
|
eqtrdi |
|- ( k = 0 -> ( 0 _C k ) = 1 ) |
101 |
|
oveq2 |
|- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
102 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
103 |
101 102
|
eqtrdi |
|- ( k = 0 -> ( 0 - k ) = 0 ) |
104 |
103
|
oveq1d |
|- ( k = 0 -> ( ( 0 - k ) .^ A ) = ( 0 .^ A ) ) |
105 |
|
oveq1 |
|- ( k = 0 -> ( k .^ B ) = ( 0 .^ B ) ) |
106 |
104 105
|
oveq12d |
|- ( k = 0 -> ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) = ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) |
107 |
100 106
|
oveq12d |
|- ( k = 0 -> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
108 |
1 107
|
gsumsn |
|- ( ( R e. Mnd /\ 0 e. _V /\ ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) e. S ) -> ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
109 |
90 92 95 108
|
syl3anc |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
110 |
88 109
|
eqtrd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
111 |
1 4
|
mndcl |
|- ( ( R e. Mnd /\ A e. S /\ B e. S ) -> ( A .+ B ) e. S ) |
112 |
90 51 58 111
|
syl3anc |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( A .+ B ) e. S ) |
113 |
112 52
|
eleqtrdi |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( A .+ B ) e. ( Base ` G ) ) |
114 |
54 55 6
|
mulg0 |
|- ( ( A .+ B ) e. ( Base ` G ) -> ( 0 .^ ( A .+ B ) ) = ( 0g ` G ) ) |
115 |
113 114
|
syl |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( 0g ` G ) ) |
116 |
84 110 115
|
3eqtr4rd |
|- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
117 |
|
simprl |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> R e. SRing ) |
118 |
51
|
adantl |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> A e. S ) |
119 |
58
|
adantl |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> B e. S ) |
120 |
|
simprr3 |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> ( A .X. B ) = ( B .X. A ) ) |
121 |
|
simpl |
|- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> n e. NN0 ) |
122 |
|
id |
|- ( ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
123 |
1 2 3 4 5 6 117 118 119 120 121 122
|
srgbinomlem |
|- ( ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) /\ ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
124 |
123
|
exp31 |
|- ( n e. NN0 -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
125 |
124
|
a2d |
|- ( n e. NN0 -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
126 |
17 28 39 50 116 125
|
nn0ind |
|- ( N e. NN0 -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
127 |
126
|
expd |
|- ( N e. NN0 -> ( R e. SRing -> ( ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
128 |
127
|
impcom |
|- ( ( R e. SRing /\ N e. NN0 ) -> ( ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
129 |
128
|
imp |
|- ( ( ( R e. SRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |