Step |
Hyp |
Ref |
Expression |
1 |
|
srgbinom.s |
|- S = ( Base ` R ) |
2 |
|
srgbinom.m |
|- .X. = ( .r ` R ) |
3 |
|
srgbinom.t |
|- .x. = ( .g ` R ) |
4 |
|
srgbinom.a |
|- .+ = ( +g ` R ) |
5 |
|
srgbinom.g |
|- G = ( mulGrp ` R ) |
6 |
|
srgbinom.e |
|- .^ = ( .g ` G ) |
7 |
|
srgbinomlem.r |
|- ( ph -> R e. SRing ) |
8 |
|
srgbinomlem.a |
|- ( ph -> A e. S ) |
9 |
|
srgbinomlem.b |
|- ( ph -> B e. S ) |
10 |
|
srgbinomlem.c |
|- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
11 |
|
srgbinomlem.n |
|- ( ph -> N e. NN0 ) |
12 |
7
|
adantr |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> R e. SRing ) |
13 |
5
|
srgmgp |
|- ( R e. SRing -> G e. Mnd ) |
14 |
7 13
|
syl |
|- ( ph -> G e. Mnd ) |
15 |
14
|
adantr |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> G e. Mnd ) |
16 |
|
simprl |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> D e. NN0 ) |
17 |
8
|
adantr |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> A e. S ) |
18 |
5 1
|
mgpbas |
|- S = ( Base ` G ) |
19 |
18 6
|
mulgnn0cl |
|- ( ( G e. Mnd /\ D e. NN0 /\ A e. S ) -> ( D .^ A ) e. S ) |
20 |
15 16 17 19
|
syl3anc |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> ( D .^ A ) e. S ) |
21 |
|
simprr |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> E e. NN0 ) |
22 |
9
|
adantr |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> B e. S ) |
23 |
18 6
|
mulgnn0cl |
|- ( ( G e. Mnd /\ E e. NN0 /\ B e. S ) -> ( E .^ B ) e. S ) |
24 |
15 21 22 23
|
syl3anc |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> ( E .^ B ) e. S ) |
25 |
1 2
|
srgcl |
|- ( ( R e. SRing /\ ( D .^ A ) e. S /\ ( E .^ B ) e. S ) -> ( ( D .^ A ) .X. ( E .^ B ) ) e. S ) |
26 |
12 20 24 25
|
syl3anc |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> ( ( D .^ A ) .X. ( E .^ B ) ) e. S ) |