Step |
Hyp |
Ref |
Expression |
1 |
|
srgbinom.s |
|- S = ( Base ` R ) |
2 |
|
srgbinom.m |
|- .X. = ( .r ` R ) |
3 |
|
srgbinom.t |
|- .x. = ( .g ` R ) |
4 |
|
srgbinom.a |
|- .+ = ( +g ` R ) |
5 |
|
srgbinom.g |
|- G = ( mulGrp ` R ) |
6 |
|
srgbinom.e |
|- .^ = ( .g ` G ) |
7 |
|
srgbinomlem.r |
|- ( ph -> R e. SRing ) |
8 |
|
srgbinomlem.a |
|- ( ph -> A e. S ) |
9 |
|
srgbinomlem.b |
|- ( ph -> B e. S ) |
10 |
|
srgbinomlem.c |
|- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
11 |
|
srgbinomlem.n |
|- ( ph -> N e. NN0 ) |
12 |
|
srgmnd |
|- ( R e. SRing -> R e. Mnd ) |
13 |
7 12
|
syl |
|- ( ph -> R e. Mnd ) |
14 |
13
|
adantr |
|- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> R e. Mnd ) |
15 |
|
simpr1 |
|- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> C e. NN0 ) |
16 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem1 |
|- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> ( ( D .^ A ) .X. ( E .^ B ) ) e. S ) |
17 |
16
|
3adantr1 |
|- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> ( ( D .^ A ) .X. ( E .^ B ) ) e. S ) |
18 |
1 3
|
mulgnn0cl |
|- ( ( R e. Mnd /\ C e. NN0 /\ ( ( D .^ A ) .X. ( E .^ B ) ) e. S ) -> ( C .x. ( ( D .^ A ) .X. ( E .^ B ) ) ) e. S ) |
19 |
14 15 17 18
|
syl3anc |
|- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> ( C .x. ( ( D .^ A ) .X. ( E .^ B ) ) ) e. S ) |