| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 2 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 3 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 4 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 6 | 1 2 3 4 5 | issrg |  |-  ( R e. SRing <-> ( R e. CMnd /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) ( A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) /\ ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) ) ) | 
						
							| 7 | 6 | simp1bi |  |-  ( R e. SRing -> R e. CMnd ) |