Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
2 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
3 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
1 2 3 4 5
|
issrg |
|- ( R e. SRing <-> ( R e. CMnd /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) ( A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) /\ ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) ) ) |
7 |
6
|
simp1bi |
|- ( R e. SRing -> R e. CMnd ) |