Description: Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgdi.b | |- B = ( Base ` R ) | |
| srgdi.p | |- .+ = ( +g ` R ) | ||
| srgdi.t | |- .x. = ( .r ` R ) | ||
| Assertion | srgdir | |- ( ( R e. SRing /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | srgdi.b | |- B = ( Base ` R ) | |
| 2 | srgdi.p | |- .+ = ( +g ` R ) | |
| 3 | srgdi.t | |- .x. = ( .r ` R ) | |
| 4 | 1 2 3 | srgdilem | |- ( ( R e. SRing /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) /\ ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) ) | 
| 5 | 4 | simprd | |- ( ( R e. SRing /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) |