| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srg1zr.b |
|- B = ( Base ` R ) |
| 2 |
|
srg1zr.p |
|- .+ = ( +g ` R ) |
| 3 |
|
srg1zr.t |
|- .* = ( .r ` R ) |
| 4 |
|
srgen1zr.p |
|- Z = ( 0g ` R ) |
| 5 |
1 4
|
srg0cl |
|- ( R e. SRing -> Z e. B ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> Z e. B ) |
| 7 |
|
en1eqsnbi |
|- ( Z e. B -> ( B ~~ 1o <-> B = { Z } ) ) |
| 8 |
7
|
adantl |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B ~~ 1o <-> B = { Z } ) ) |
| 9 |
1 2 3
|
srg1zr |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |
| 10 |
8 9
|
bitrd |
|- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B ~~ 1o <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |
| 11 |
6 10
|
mpdan |
|- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> ( B ~~ 1o <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |