Metamath Proof Explorer


Theorem srgidcl

Description: The unit element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidcl.b
|- B = ( Base ` R )
srgidcl.u
|- .1. = ( 1r ` R )
Assertion srgidcl
|- ( R e. SRing -> .1. e. B )

Proof

Step Hyp Ref Expression
1 srgidcl.b
 |-  B = ( Base ` R )
2 srgidcl.u
 |-  .1. = ( 1r ` R )
3 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
4 3 srgmgp
 |-  ( R e. SRing -> ( mulGrp ` R ) e. Mnd )
5 3 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
6 3 2 ringidval
 |-  .1. = ( 0g ` ( mulGrp ` R ) )
7 5 6 mndidcl
 |-  ( ( mulGrp ` R ) e. Mnd -> .1. e. B )
8 4 7 syl
 |-  ( R e. SRing -> .1. e. B )