| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgidm.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | srgidm.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | srgidm.u |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 5 | 4 | srgmgp |  |-  ( R e. SRing -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 6 | 4 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 7 | 4 2 | mgpplusg |  |-  .x. = ( +g ` ( mulGrp ` R ) ) | 
						
							| 8 | 4 3 | ringidval |  |-  .1. = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 9 | 6 7 8 | mndlrid |  |-  ( ( ( mulGrp ` R ) e. Mnd /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) | 
						
							| 10 | 5 9 | sylan |  |-  ( ( R e. SRing /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) |