Step |
Hyp |
Ref |
Expression |
1 |
|
srgidm.b |
|- B = ( Base ` R ) |
2 |
|
srgidm.t |
|- .x. = ( .r ` R ) |
3 |
|
srgidm.u |
|- .1. = ( 1r ` R ) |
4 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
5 |
4
|
srgmgp |
|- ( R e. SRing -> ( mulGrp ` R ) e. Mnd ) |
6 |
4 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
7 |
4 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
8 |
4 3
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
9 |
6 7 8
|
mndlrid |
|- ( ( ( mulGrp ` R ) e. Mnd /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) |
10 |
5 9
|
sylan |
|- ( ( R e. SRing /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) |