| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgz.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | srgz.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | srgz.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | srgisid.1 |  |-  ( ph -> R e. SRing ) | 
						
							| 5 |  | srgisid.2 |  |-  ( ph -> Z e. B ) | 
						
							| 6 |  | srgisid.3 |  |-  ( ( ph /\ x e. B ) -> ( Z .x. x ) = Z ) | 
						
							| 7 | 6 | ralrimiva |  |-  ( ph -> A. x e. B ( Z .x. x ) = Z ) | 
						
							| 8 | 1 3 | srg0cl |  |-  ( R e. SRing -> .0. e. B ) | 
						
							| 9 |  | oveq2 |  |-  ( x = .0. -> ( Z .x. x ) = ( Z .x. .0. ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( x = .0. -> ( ( Z .x. x ) = Z <-> ( Z .x. .0. ) = Z ) ) | 
						
							| 11 | 10 | rspcv |  |-  ( .0. e. B -> ( A. x e. B ( Z .x. x ) = Z -> ( Z .x. .0. ) = Z ) ) | 
						
							| 12 | 4 8 11 | 3syl |  |-  ( ph -> ( A. x e. B ( Z .x. x ) = Z -> ( Z .x. .0. ) = Z ) ) | 
						
							| 13 | 7 12 | mpd |  |-  ( ph -> ( Z .x. .0. ) = Z ) | 
						
							| 14 | 1 2 3 | srgrz |  |-  ( ( R e. SRing /\ Z e. B ) -> ( Z .x. .0. ) = .0. ) | 
						
							| 15 | 4 5 14 | syl2anc |  |-  ( ph -> ( Z .x. .0. ) = .0. ) | 
						
							| 16 | 13 15 | eqtr3d |  |-  ( ph -> Z = .0. ) |