Step |
Hyp |
Ref |
Expression |
1 |
|
srgpcomp.s |
|- S = ( Base ` R ) |
2 |
|
srgpcomp.m |
|- .X. = ( .r ` R ) |
3 |
|
srgpcomp.g |
|- G = ( mulGrp ` R ) |
4 |
|
srgpcomp.e |
|- .^ = ( .g ` G ) |
5 |
|
srgpcomp.r |
|- ( ph -> R e. SRing ) |
6 |
|
srgpcomp.a |
|- ( ph -> A e. S ) |
7 |
|
srgpcomp.b |
|- ( ph -> B e. S ) |
8 |
|
srgpcomp.k |
|- ( ph -> K e. NN0 ) |
9 |
|
srgpcomp.c |
|- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
10 |
|
oveq1 |
|- ( x = 0 -> ( x .^ B ) = ( 0 .^ B ) ) |
11 |
10
|
oveq1d |
|- ( x = 0 -> ( ( x .^ B ) .X. A ) = ( ( 0 .^ B ) .X. A ) ) |
12 |
10
|
oveq2d |
|- ( x = 0 -> ( A .X. ( x .^ B ) ) = ( A .X. ( 0 .^ B ) ) ) |
13 |
11 12
|
eqeq12d |
|- ( x = 0 -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) ) |
14 |
13
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) ) ) |
15 |
|
oveq1 |
|- ( x = y -> ( x .^ B ) = ( y .^ B ) ) |
16 |
15
|
oveq1d |
|- ( x = y -> ( ( x .^ B ) .X. A ) = ( ( y .^ B ) .X. A ) ) |
17 |
15
|
oveq2d |
|- ( x = y -> ( A .X. ( x .^ B ) ) = ( A .X. ( y .^ B ) ) ) |
18 |
16 17
|
eqeq12d |
|- ( x = y -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) ) |
19 |
18
|
imbi2d |
|- ( x = y -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) ) ) |
20 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x .^ B ) = ( ( y + 1 ) .^ B ) ) |
21 |
20
|
oveq1d |
|- ( x = ( y + 1 ) -> ( ( x .^ B ) .X. A ) = ( ( ( y + 1 ) .^ B ) .X. A ) ) |
22 |
20
|
oveq2d |
|- ( x = ( y + 1 ) -> ( A .X. ( x .^ B ) ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
23 |
21 22
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) |
24 |
23
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
25 |
|
oveq1 |
|- ( x = K -> ( x .^ B ) = ( K .^ B ) ) |
26 |
25
|
oveq1d |
|- ( x = K -> ( ( x .^ B ) .X. A ) = ( ( K .^ B ) .X. A ) ) |
27 |
25
|
oveq2d |
|- ( x = K -> ( A .X. ( x .^ B ) ) = ( A .X. ( K .^ B ) ) ) |
28 |
26 27
|
eqeq12d |
|- ( x = K -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) |
29 |
28
|
imbi2d |
|- ( x = K -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) ) |
30 |
3 1
|
mgpbas |
|- S = ( Base ` G ) |
31 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
32 |
3 31
|
ringidval |
|- ( 1r ` R ) = ( 0g ` G ) |
33 |
30 32 4
|
mulg0 |
|- ( B e. S -> ( 0 .^ B ) = ( 1r ` R ) ) |
34 |
7 33
|
syl |
|- ( ph -> ( 0 .^ B ) = ( 1r ` R ) ) |
35 |
34
|
oveq1d |
|- ( ph -> ( ( 0 .^ B ) .X. A ) = ( ( 1r ` R ) .X. A ) ) |
36 |
1 2 31
|
srgridm |
|- ( ( R e. SRing /\ A e. S ) -> ( A .X. ( 1r ` R ) ) = A ) |
37 |
5 6 36
|
syl2anc |
|- ( ph -> ( A .X. ( 1r ` R ) ) = A ) |
38 |
34
|
oveq2d |
|- ( ph -> ( A .X. ( 0 .^ B ) ) = ( A .X. ( 1r ` R ) ) ) |
39 |
1 2 31
|
srglidm |
|- ( ( R e. SRing /\ A e. S ) -> ( ( 1r ` R ) .X. A ) = A ) |
40 |
5 6 39
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .X. A ) = A ) |
41 |
37 38 40
|
3eqtr4rd |
|- ( ph -> ( ( 1r ` R ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) |
42 |
35 41
|
eqtrd |
|- ( ph -> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) |
43 |
3
|
srgmgp |
|- ( R e. SRing -> G e. Mnd ) |
44 |
5 43
|
syl |
|- ( ph -> G e. Mnd ) |
45 |
44
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> G e. Mnd ) |
46 |
|
simpr |
|- ( ( ph /\ y e. NN0 ) -> y e. NN0 ) |
47 |
7
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> B e. S ) |
48 |
3 2
|
mgpplusg |
|- .X. = ( +g ` G ) |
49 |
30 4 48
|
mulgnn0p1 |
|- ( ( G e. Mnd /\ y e. NN0 /\ B e. S ) -> ( ( y + 1 ) .^ B ) = ( ( y .^ B ) .X. B ) ) |
50 |
45 46 47 49
|
syl3anc |
|- ( ( ph /\ y e. NN0 ) -> ( ( y + 1 ) .^ B ) = ( ( y .^ B ) .X. B ) ) |
51 |
50
|
oveq1d |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. B ) .X. A ) ) |
52 |
9
|
eqcomd |
|- ( ph -> ( B .X. A ) = ( A .X. B ) ) |
53 |
52
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> ( B .X. A ) = ( A .X. B ) ) |
54 |
53
|
oveq2d |
|- ( ( ph /\ y e. NN0 ) -> ( ( y .^ B ) .X. ( B .X. A ) ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
55 |
5
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> R e. SRing ) |
56 |
30 4
|
mulgnn0cl |
|- ( ( G e. Mnd /\ y e. NN0 /\ B e. S ) -> ( y .^ B ) e. S ) |
57 |
45 46 47 56
|
syl3anc |
|- ( ( ph /\ y e. NN0 ) -> ( y .^ B ) e. S ) |
58 |
6
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> A e. S ) |
59 |
1 2
|
srgass |
|- ( ( R e. SRing /\ ( ( y .^ B ) e. S /\ B e. S /\ A e. S ) ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( y .^ B ) .X. ( B .X. A ) ) ) |
60 |
55 57 47 58 59
|
syl13anc |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( y .^ B ) .X. ( B .X. A ) ) ) |
61 |
1 2
|
srgass |
|- ( ( R e. SRing /\ ( ( y .^ B ) e. S /\ A e. S /\ B e. S ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
62 |
55 57 58 47 61
|
syl13anc |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
63 |
54 60 62
|
3eqtr4d |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
64 |
51 63
|
eqtrd |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
65 |
64
|
adantr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
66 |
|
oveq1 |
|- ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( A .X. ( y .^ B ) ) .X. B ) ) |
67 |
1 2
|
srgass |
|- ( ( R e. SRing /\ ( A e. S /\ ( y .^ B ) e. S /\ B e. S ) ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y .^ B ) .X. B ) ) ) |
68 |
55 58 57 47 67
|
syl13anc |
|- ( ( ph /\ y e. NN0 ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y .^ B ) .X. B ) ) ) |
69 |
50
|
eqcomd |
|- ( ( ph /\ y e. NN0 ) -> ( ( y .^ B ) .X. B ) = ( ( y + 1 ) .^ B ) ) |
70 |
69
|
oveq2d |
|- ( ( ph /\ y e. NN0 ) -> ( A .X. ( ( y .^ B ) .X. B ) ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
71 |
68 70
|
eqtrd |
|- ( ( ph /\ y e. NN0 ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
72 |
66 71
|
sylan9eqr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
73 |
65 72
|
eqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
74 |
73
|
ex |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) |
75 |
74
|
expcom |
|- ( y e. NN0 -> ( ph -> ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
76 |
75
|
a2d |
|- ( y e. NN0 -> ( ( ph -> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ph -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
77 |
14 19 24 29 42 76
|
nn0ind |
|- ( K e. NN0 -> ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) |
78 |
8 77
|
mpcom |
|- ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) |