| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srgpcomp.s |
|- S = ( Base ` R ) |
| 2 |
|
srgpcomp.m |
|- .X. = ( .r ` R ) |
| 3 |
|
srgpcomp.g |
|- G = ( mulGrp ` R ) |
| 4 |
|
srgpcomp.e |
|- .^ = ( .g ` G ) |
| 5 |
|
srgpcomp.r |
|- ( ph -> R e. SRing ) |
| 6 |
|
srgpcomp.a |
|- ( ph -> A e. S ) |
| 7 |
|
srgpcomp.b |
|- ( ph -> B e. S ) |
| 8 |
|
srgpcomp.k |
|- ( ph -> K e. NN0 ) |
| 9 |
|
srgpcomp.c |
|- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
| 10 |
|
srgpcompp.n |
|- ( ph -> N e. NN0 ) |
| 11 |
|
srgpcomppsc.t |
|- .x. = ( .g ` R ) |
| 12 |
|
srgpcomppsc.c |
|- ( ph -> C e. NN0 ) |
| 13 |
3 1
|
mgpbas |
|- S = ( Base ` G ) |
| 14 |
3
|
srgmgp |
|- ( R e. SRing -> G e. Mnd ) |
| 15 |
5 14
|
syl |
|- ( ph -> G e. Mnd ) |
| 16 |
13 4 15 10 6
|
mulgnn0cld |
|- ( ph -> ( N .^ A ) e. S ) |
| 17 |
13 4 15 8 7
|
mulgnn0cld |
|- ( ph -> ( K .^ B ) e. S ) |
| 18 |
1 11 2
|
srgmulgass |
|- ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( K .^ B ) e. S ) ) -> ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) = ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) ) |
| 19 |
18
|
eqcomd |
|- ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( K .^ B ) e. S ) ) -> ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) = ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) ) |
| 20 |
5 12 16 17 19
|
syl13anc |
|- ( ph -> ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) = ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) ) |
| 21 |
20
|
oveq1d |
|- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) ) |
| 22 |
|
srgmnd |
|- ( R e. SRing -> R e. Mnd ) |
| 23 |
5 22
|
syl |
|- ( ph -> R e. Mnd ) |
| 24 |
1 11 23 12 16
|
mulgnn0cld |
|- ( ph -> ( C .x. ( N .^ A ) ) e. S ) |
| 25 |
1 2
|
srgass |
|- ( ( R e. SRing /\ ( ( C .x. ( N .^ A ) ) e. S /\ ( K .^ B ) e. S /\ A e. S ) ) -> ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 26 |
5 24 17 6 25
|
syl13anc |
|- ( ph -> ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 27 |
21 26
|
eqtrd |
|- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 28 |
1 2
|
srgcl |
|- ( ( R e. SRing /\ ( K .^ B ) e. S /\ A e. S ) -> ( ( K .^ B ) .X. A ) e. S ) |
| 29 |
5 17 6 28
|
syl3anc |
|- ( ph -> ( ( K .^ B ) .X. A ) e. S ) |
| 30 |
1 11 2
|
srgmulgass |
|- ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( ( K .^ B ) .X. A ) e. S ) ) -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) ) |
| 31 |
5 12 16 29 30
|
syl13anc |
|- ( ph -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) ) |
| 32 |
1 2
|
srgass |
|- ( ( R e. SRing /\ ( ( N .^ A ) e. S /\ ( K .^ B ) e. S /\ A e. S ) ) -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 33 |
5 16 17 6 32
|
syl13anc |
|- ( ph -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 34 |
33
|
eqcomd |
|- ( ph -> ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) = ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) |
| 35 |
34
|
oveq2d |
|- ( ph -> ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) = ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) ) |
| 36 |
31 35
|
eqtrd |
|- ( ph -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) ) |
| 37 |
1 2 3 4 5 6 7 8 9 10
|
srgpcompp |
|- ( ph -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) ) |
| 39 |
27 36 38
|
3eqtrd |
|- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) ) |