| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgz.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | srgz.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | srgz.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 5 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 6 | 1 4 5 2 3 | issrg |  |-  ( R e. SRing <-> ( R e. CMnd /\ ( mulGrp ` R ) e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y ( +g ` R ) z ) ) = ( ( x .x. y ) ( +g ` R ) ( x .x. z ) ) /\ ( ( x ( +g ` R ) y ) .x. z ) = ( ( x .x. z ) ( +g ` R ) ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) | 
						
							| 7 | 6 | simp3bi |  |-  ( R e. SRing -> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y ( +g ` R ) z ) ) = ( ( x .x. y ) ( +g ` R ) ( x .x. z ) ) /\ ( ( x ( +g ` R ) y ) .x. z ) = ( ( x .x. z ) ( +g ` R ) ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) | 
						
							| 8 | 7 | r19.21bi |  |-  ( ( R e. SRing /\ x e. B ) -> ( A. y e. B A. z e. B ( ( x .x. ( y ( +g ` R ) z ) ) = ( ( x .x. y ) ( +g ` R ) ( x .x. z ) ) /\ ( ( x ( +g ` R ) y ) .x. z ) = ( ( x .x. z ) ( +g ` R ) ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) | 
						
							| 9 | 8 | simprrd |  |-  ( ( R e. SRing /\ x e. B ) -> ( x .x. .0. ) = .0. ) | 
						
							| 10 | 9 | ralrimiva |  |-  ( R e. SRing -> A. x e. B ( x .x. .0. ) = .0. ) | 
						
							| 11 |  | oveq1 |  |-  ( x = X -> ( x .x. .0. ) = ( X .x. .0. ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( x = X -> ( ( x .x. .0. ) = .0. <-> ( X .x. .0. ) = .0. ) ) | 
						
							| 13 | 12 | rspcv |  |-  ( X e. B -> ( A. x e. B ( x .x. .0. ) = .0. -> ( X .x. .0. ) = .0. ) ) | 
						
							| 14 | 10 13 | mpan9 |  |-  ( ( R e. SRing /\ X e. B ) -> ( X .x. .0. ) = .0. ) |