| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srng0.i |
|- .* = ( *r ` R ) |
| 2 |
|
srng0.z |
|- .0. = ( 0g ` R ) |
| 3 |
|
srngring |
|- ( R e. *Ring -> R e. Ring ) |
| 4 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5 2
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 7 |
|
eqid |
|- ( *rf ` R ) = ( *rf ` R ) |
| 8 |
5 1 7
|
stafval |
|- ( .0. e. ( Base ` R ) -> ( ( *rf ` R ) ` .0. ) = ( .* ` .0. ) ) |
| 9 |
3 4 6 8
|
4syl |
|- ( R e. *Ring -> ( ( *rf ` R ) ` .0. ) = ( .* ` .0. ) ) |
| 10 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 11 |
10 7
|
srngrhm |
|- ( R e. *Ring -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
| 12 |
|
rhmghm |
|- ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) -> ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) ) |
| 13 |
10 2
|
oppr0 |
|- .0. = ( 0g ` ( oppR ` R ) ) |
| 14 |
2 13
|
ghmid |
|- ( ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) -> ( ( *rf ` R ) ` .0. ) = .0. ) |
| 15 |
11 12 14
|
3syl |
|- ( R e. *Ring -> ( ( *rf ` R ) ` .0. ) = .0. ) |
| 16 |
9 15
|
eqtr3d |
|- ( R e. *Ring -> ( .* ` .0. ) = .0. ) |