Step |
Hyp |
Ref |
Expression |
1 |
|
srng0.i |
|- .* = ( *r ` R ) |
2 |
|
srng0.z |
|- .0. = ( 0g ` R ) |
3 |
|
srngring |
|- ( R e. *Ring -> R e. Ring ) |
4 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
5 2
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
7 |
|
eqid |
|- ( *rf ` R ) = ( *rf ` R ) |
8 |
5 1 7
|
stafval |
|- ( .0. e. ( Base ` R ) -> ( ( *rf ` R ) ` .0. ) = ( .* ` .0. ) ) |
9 |
3 4 6 8
|
4syl |
|- ( R e. *Ring -> ( ( *rf ` R ) ` .0. ) = ( .* ` .0. ) ) |
10 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
11 |
10 7
|
srngrhm |
|- ( R e. *Ring -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
12 |
|
rhmghm |
|- ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) -> ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) ) |
13 |
10 2
|
oppr0 |
|- .0. = ( 0g ` ( oppR ` R ) ) |
14 |
2 13
|
ghmid |
|- ( ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) -> ( ( *rf ` R ) ` .0. ) = .0. ) |
15 |
11 12 14
|
3syl |
|- ( R e. *Ring -> ( ( *rf ` R ) ` .0. ) = .0. ) |
16 |
9 15
|
eqtr3d |
|- ( R e. *Ring -> ( .* ` .0. ) = .0. ) |