| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srng1.i |
|- .* = ( *r ` R ) |
| 2 |
|
srng1.t |
|- .1. = ( 1r ` R ) |
| 3 |
|
srngring |
|- ( R e. *Ring -> R e. Ring ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
4 2
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 6 |
|
eqid |
|- ( *rf ` R ) = ( *rf ` R ) |
| 7 |
4 1 6
|
stafval |
|- ( .1. e. ( Base ` R ) -> ( ( *rf ` R ) ` .1. ) = ( .* ` .1. ) ) |
| 8 |
3 5 7
|
3syl |
|- ( R e. *Ring -> ( ( *rf ` R ) ` .1. ) = ( .* ` .1. ) ) |
| 9 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 10 |
9 6
|
srngrhm |
|- ( R e. *Ring -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
| 11 |
9 2
|
oppr1 |
|- .1. = ( 1r ` ( oppR ` R ) ) |
| 12 |
2 11
|
rhm1 |
|- ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) -> ( ( *rf ` R ) ` .1. ) = .1. ) |
| 13 |
10 12
|
syl |
|- ( R e. *Ring -> ( ( *rf ` R ) ` .1. ) = .1. ) |
| 14 |
8 13
|
eqtr3d |
|- ( R e. *Ring -> ( .* ` .1. ) = .1. ) |