Step |
Hyp |
Ref |
Expression |
1 |
|
srng1.i |
|- .* = ( *r ` R ) |
2 |
|
srng1.t |
|- .1. = ( 1r ` R ) |
3 |
|
srngring |
|- ( R e. *Ring -> R e. Ring ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
4 2
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
6 |
|
eqid |
|- ( *rf ` R ) = ( *rf ` R ) |
7 |
4 1 6
|
stafval |
|- ( .1. e. ( Base ` R ) -> ( ( *rf ` R ) ` .1. ) = ( .* ` .1. ) ) |
8 |
3 5 7
|
3syl |
|- ( R e. *Ring -> ( ( *rf ` R ) ` .1. ) = ( .* ` .1. ) ) |
9 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
10 |
9 6
|
srngrhm |
|- ( R e. *Ring -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
11 |
9 2
|
oppr1 |
|- .1. = ( 1r ` ( oppR ` R ) ) |
12 |
2 11
|
rhm1 |
|- ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) -> ( ( *rf ` R ) ` .1. ) = .1. ) |
13 |
10 12
|
syl |
|- ( R e. *Ring -> ( ( *rf ` R ) ` .1. ) = .1. ) |
14 |
8 13
|
eqtr3d |
|- ( R e. *Ring -> ( .* ` .1. ) = .1. ) |