| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srngcl.i |  |-  .* = ( *r ` R ) | 
						
							| 2 |  | srngcl.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | eqid |  |-  ( *rf ` R ) = ( *rf ` R ) | 
						
							| 4 | 2 1 3 | stafval |  |-  ( X e. B -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) | 
						
							| 6 | 3 2 | srngf1o |  |-  ( R e. *Ring -> ( *rf ` R ) : B -1-1-onto-> B ) | 
						
							| 7 |  | f1of |  |-  ( ( *rf ` R ) : B -1-1-onto-> B -> ( *rf ` R ) : B --> B ) | 
						
							| 8 | 6 7 | syl |  |-  ( R e. *Ring -> ( *rf ` R ) : B --> B ) | 
						
							| 9 | 8 | ffvelcdmda |  |-  ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) e. B ) | 
						
							| 10 | 5 9 | eqeltrrd |  |-  ( ( R e. *Ring /\ X e. B ) -> ( .* ` X ) e. B ) |