Step |
Hyp |
Ref |
Expression |
1 |
|
srngcnv.i |
|- .* = ( *rf ` R ) |
2 |
|
srngf1o.b |
|- B = ( Base ` R ) |
3 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
4 |
3 1
|
srngrhm |
|- ( R e. *Ring -> .* e. ( R RingHom ( oppR ` R ) ) ) |
5 |
|
eqid |
|- ( Base ` ( oppR ` R ) ) = ( Base ` ( oppR ` R ) ) |
6 |
2 5
|
rhmf |
|- ( .* e. ( R RingHom ( oppR ` R ) ) -> .* : B --> ( Base ` ( oppR ` R ) ) ) |
7 |
|
ffn |
|- ( .* : B --> ( Base ` ( oppR ` R ) ) -> .* Fn B ) |
8 |
4 6 7
|
3syl |
|- ( R e. *Ring -> .* Fn B ) |
9 |
1
|
srngcnv |
|- ( R e. *Ring -> .* = `' .* ) |
10 |
9
|
fneq1d |
|- ( R e. *Ring -> ( .* Fn B <-> `' .* Fn B ) ) |
11 |
8 10
|
mpbid |
|- ( R e. *Ring -> `' .* Fn B ) |
12 |
|
dff1o4 |
|- ( .* : B -1-1-onto-> B <-> ( .* Fn B /\ `' .* Fn B ) ) |
13 |
8 11 12
|
sylanbrc |
|- ( R e. *Ring -> .* : B -1-1-onto-> B ) |