| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srngcnv.i |  |-  .* = ( *rf ` R ) | 
						
							| 2 |  | srngf1o.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | eqid |  |-  ( oppR ` R ) = ( oppR ` R ) | 
						
							| 4 | 3 1 | srngrhm |  |-  ( R e. *Ring -> .* e. ( R RingHom ( oppR ` R ) ) ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( oppR ` R ) ) = ( Base ` ( oppR ` R ) ) | 
						
							| 6 | 2 5 | rhmf |  |-  ( .* e. ( R RingHom ( oppR ` R ) ) -> .* : B --> ( Base ` ( oppR ` R ) ) ) | 
						
							| 7 |  | ffn |  |-  ( .* : B --> ( Base ` ( oppR ` R ) ) -> .* Fn B ) | 
						
							| 8 | 4 6 7 | 3syl |  |-  ( R e. *Ring -> .* Fn B ) | 
						
							| 9 | 1 | srngcnv |  |-  ( R e. *Ring -> .* = `' .* ) | 
						
							| 10 | 9 | fneq1d |  |-  ( R e. *Ring -> ( .* Fn B <-> `' .* Fn B ) ) | 
						
							| 11 | 8 10 | mpbid |  |-  ( R e. *Ring -> `' .* Fn B ) | 
						
							| 12 |  | dff1o4 |  |-  ( .* : B -1-1-onto-> B <-> ( .* Fn B /\ `' .* Fn B ) ) | 
						
							| 13 | 8 11 12 | sylanbrc |  |-  ( R e. *Ring -> .* : B -1-1-onto-> B ) |