Description: The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | srngstr.r | |- R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) | |
| Assertion | srnginvl | |- ( .* e. X -> .* = ( *r ` R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | srngstr.r |  |-  R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) | |
| 2 | 1 | srngstr | |- R Struct <. 1 , 4 >. | 
| 3 | starvid | |- *r = Slot ( *r ` ndx ) | |
| 4 | ssun2 |  |-  { <. ( *r ` ndx ) , .* >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) | |
| 5 | 4 1 | sseqtrri |  |-  { <. ( *r ` ndx ) , .* >. } C_ R | 
| 6 | 2 3 5 | strfv | |- ( .* e. X -> .* = ( *r ` R ) ) |