| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srngcl.i |  |-  .* = ( *r ` R ) | 
						
							| 2 |  | srngcl.b |  |-  B = ( Base ` R ) | 
						
							| 3 | 1 2 | srngcl |  |-  ( ( R e. *Ring /\ X e. B ) -> ( .* ` X ) e. B ) | 
						
							| 4 |  | eqid |  |-  ( *rf ` R ) = ( *rf ` R ) | 
						
							| 5 | 2 1 4 | stafval |  |-  ( ( .* ` X ) e. B -> ( ( *rf ` R ) ` ( .* ` X ) ) = ( .* ` ( .* ` X ) ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( .* ` X ) ) = ( .* ` ( .* ` X ) ) ) | 
						
							| 7 | 4 | srngcnv |  |-  ( R e. *Ring -> ( *rf ` R ) = `' ( *rf ` R ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( R e. *Ring /\ X e. B ) -> ( *rf ` R ) = `' ( *rf ` R ) ) | 
						
							| 9 | 8 | fveq1d |  |-  ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) ) | 
						
							| 10 | 2 1 4 | stafval |  |-  ( X e. B -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = ( ( *rf ` R ) ` ( .* ` X ) ) ) | 
						
							| 13 | 4 2 | srngf1o |  |-  ( R e. *Ring -> ( *rf ` R ) : B -1-1-onto-> B ) | 
						
							| 14 |  | f1ocnvfv1 |  |-  ( ( ( *rf ` R ) : B -1-1-onto-> B /\ X e. B ) -> ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = X ) | 
						
							| 15 | 13 14 | sylan |  |-  ( ( R e. *Ring /\ X e. B ) -> ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = X ) | 
						
							| 16 | 9 12 15 | 3eqtr3d |  |-  ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( .* ` X ) ) = X ) | 
						
							| 17 | 6 16 | eqtr3d |  |-  ( ( R e. *Ring /\ X e. B ) -> ( .* ` ( .* ` X ) ) = X ) |