Step |
Hyp |
Ref |
Expression |
1 |
|
srngcl.i |
|- .* = ( *r ` R ) |
2 |
|
srngcl.b |
|- B = ( Base ` R ) |
3 |
1 2
|
srngcl |
|- ( ( R e. *Ring /\ X e. B ) -> ( .* ` X ) e. B ) |
4 |
|
eqid |
|- ( *rf ` R ) = ( *rf ` R ) |
5 |
2 1 4
|
stafval |
|- ( ( .* ` X ) e. B -> ( ( *rf ` R ) ` ( .* ` X ) ) = ( .* ` ( .* ` X ) ) ) |
6 |
3 5
|
syl |
|- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( .* ` X ) ) = ( .* ` ( .* ` X ) ) ) |
7 |
4
|
srngcnv |
|- ( R e. *Ring -> ( *rf ` R ) = `' ( *rf ` R ) ) |
8 |
7
|
adantr |
|- ( ( R e. *Ring /\ X e. B ) -> ( *rf ` R ) = `' ( *rf ` R ) ) |
9 |
8
|
fveq1d |
|- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) ) |
10 |
2 1 4
|
stafval |
|- ( X e. B -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
11 |
10
|
adantl |
|- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
12 |
11
|
fveq2d |
|- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = ( ( *rf ` R ) ` ( .* ` X ) ) ) |
13 |
4 2
|
srngf1o |
|- ( R e. *Ring -> ( *rf ` R ) : B -1-1-onto-> B ) |
14 |
|
f1ocnvfv1 |
|- ( ( ( *rf ` R ) : B -1-1-onto-> B /\ X e. B ) -> ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = X ) |
15 |
13 14
|
sylan |
|- ( ( R e. *Ring /\ X e. B ) -> ( `' ( *rf ` R ) ` ( ( *rf ` R ) ` X ) ) = X ) |
16 |
9 12 15
|
3eqtr3d |
|- ( ( R e. *Ring /\ X e. B ) -> ( ( *rf ` R ) ` ( .* ` X ) ) = X ) |
17 |
6 16
|
eqtr3d |
|- ( ( R e. *Ring /\ X e. B ) -> ( .* ` ( .* ` X ) ) = X ) |