Metamath Proof Explorer


Theorem srngrhm

Description: The involution function in a star ring is an antiautomorphism. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses issrng.o
|- O = ( oppR ` R )
issrng.i
|- .* = ( *rf ` R )
Assertion srngrhm
|- ( R e. *Ring -> .* e. ( R RingHom O ) )

Proof

Step Hyp Ref Expression
1 issrng.o
 |-  O = ( oppR ` R )
2 issrng.i
 |-  .* = ( *rf ` R )
3 1 2 issrng
 |-  ( R e. *Ring <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) )
4 3 simplbi
 |-  ( R e. *Ring -> .* e. ( R RingHom O ) )