Step |
Hyp |
Ref |
Expression |
1 |
|
srngstr.r |
|- R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
2 |
|
eqid |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } |
3 |
2
|
rngstr |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } Struct <. 1 , 3 >. |
4 |
|
4nn |
|- 4 e. NN |
5 |
|
starvndx |
|- ( *r ` ndx ) = 4 |
6 |
4 5
|
strle1 |
|- { <. ( *r ` ndx ) , .* >. } Struct <. 4 , 4 >. |
7 |
|
3lt4 |
|- 3 < 4 |
8 |
3 6 7
|
strleun |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) Struct <. 1 , 4 >. |
9 |
1 8
|
eqbrtri |
|- R Struct <. 1 , 4 >. |