Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ss2ab | |- ( { x | ph } C_ { x | ps } <-> A. x ( ph -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 | |- F/_ x { x | ph } |
|
2 | nfab1 | |- F/_ x { x | ps } |
|
3 | 1 2 | dfss2f | |- ( { x | ph } C_ { x | ps } <-> A. x ( x e. { x | ph } -> x e. { x | ps } ) ) |
4 | abid | |- ( x e. { x | ph } <-> ph ) |
|
5 | abid | |- ( x e. { x | ps } <-> ps ) |
|
6 | 4 5 | imbi12i | |- ( ( x e. { x | ph } -> x e. { x | ps } ) <-> ( ph -> ps ) ) |
7 | 6 | albii | |- ( A. x ( x e. { x | ph } -> x e. { x | ps } ) <-> A. x ( ph -> ps ) ) |
8 | 3 7 | bitri | |- ( { x | ph } C_ { x | ps } <-> A. x ( ph -> ps ) ) |