Step |
Hyp |
Ref |
Expression |
1 |
|
ss2abdv.1 |
|- ( ph -> ( ps -> ch ) ) |
2 |
|
df-in |
|- ( { x | ps } i^i { x | ch } ) = { y | ( y e. { x | ps } /\ y e. { x | ch } ) } |
3 |
|
df-clab |
|- ( y e. { x | ps } <-> [ y / x ] ps ) |
4 |
3
|
bicomi |
|- ( [ y / x ] ps <-> y e. { x | ps } ) |
5 |
|
df-clab |
|- ( y e. { x | ch } <-> [ y / x ] ch ) |
6 |
5
|
bicomi |
|- ( [ y / x ] ch <-> y e. { x | ch } ) |
7 |
4 6
|
anbi12i |
|- ( ( [ y / x ] ps /\ [ y / x ] ch ) <-> ( y e. { x | ps } /\ y e. { x | ch } ) ) |
8 |
7
|
abbii |
|- { y | ( [ y / x ] ps /\ [ y / x ] ch ) } = { y | ( y e. { x | ps } /\ y e. { x | ch } ) } |
9 |
|
sbequ |
|- ( y = z -> ( [ y / x ] ps <-> [ z / x ] ps ) ) |
10 |
|
sbequ |
|- ( y = z -> ( [ y / x ] ch <-> [ z / x ] ch ) ) |
11 |
9 10
|
anbi12d |
|- ( y = z -> ( ( [ y / x ] ps /\ [ y / x ] ch ) <-> ( [ z / x ] ps /\ [ z / x ] ch ) ) ) |
12 |
11
|
sbievw |
|- ( [ z / y ] ( [ y / x ] ps /\ [ y / x ] ch ) <-> ( [ z / x ] ps /\ [ z / x ] ch ) ) |
13 |
|
ax-1 |
|- ( [ z / x ] ps -> ( [ z / x ] ch -> [ z / x ] ps ) ) |
14 |
13
|
a1i |
|- ( ph -> ( [ z / x ] ps -> ( [ z / x ] ch -> [ z / x ] ps ) ) ) |
15 |
14
|
impd |
|- ( ph -> ( ( [ z / x ] ps /\ [ z / x ] ch ) -> [ z / x ] ps ) ) |
16 |
1
|
sbimdv |
|- ( ph -> ( [ z / x ] ps -> [ z / x ] ch ) ) |
17 |
16
|
ancld |
|- ( ph -> ( [ z / x ] ps -> ( [ z / x ] ps /\ [ z / x ] ch ) ) ) |
18 |
15 17
|
impbid |
|- ( ph -> ( ( [ z / x ] ps /\ [ z / x ] ch ) <-> [ z / x ] ps ) ) |
19 |
12 18
|
syl5bb |
|- ( ph -> ( [ z / y ] ( [ y / x ] ps /\ [ y / x ] ch ) <-> [ z / x ] ps ) ) |
20 |
|
df-clab |
|- ( z e. { y | ( [ y / x ] ps /\ [ y / x ] ch ) } <-> [ z / y ] ( [ y / x ] ps /\ [ y / x ] ch ) ) |
21 |
|
df-clab |
|- ( z e. { x | ps } <-> [ z / x ] ps ) |
22 |
19 20 21
|
3bitr4g |
|- ( ph -> ( z e. { y | ( [ y / x ] ps /\ [ y / x ] ch ) } <-> z e. { x | ps } ) ) |
23 |
22
|
eqrdv |
|- ( ph -> { y | ( [ y / x ] ps /\ [ y / x ] ch ) } = { x | ps } ) |
24 |
8 23
|
eqtr3id |
|- ( ph -> { y | ( y e. { x | ps } /\ y e. { x | ch } ) } = { x | ps } ) |
25 |
2 24
|
eqtrid |
|- ( ph -> ( { x | ps } i^i { x | ch } ) = { x | ps } ) |
26 |
|
df-ss |
|- ( { x | ps } C_ { x | ch } <-> ( { x | ps } i^i { x | ch } ) = { x | ps } ) |
27 |
25 26
|
sylibr |
|- ( ph -> { x | ps } C_ { x | ch } ) |