Metamath Proof Explorer


Theorem ss2abdvALT

Description: Alternate proof of ss2abdv . Shorter, but requiring ax-8 . (Contributed by Steven Nguyen, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ss2abdvALT.1
|- ( ph -> ( ps -> ch ) )
Assertion ss2abdvALT
|- ( ph -> { x | ps } C_ { x | ch } )

Proof

Step Hyp Ref Expression
1 ss2abdvALT.1
 |-  ( ph -> ( ps -> ch ) )
2 1 sbimdv
 |-  ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) )
3 df-clab
 |-  ( y e. { x | ps } <-> [ y / x ] ps )
4 df-clab
 |-  ( y e. { x | ch } <-> [ y / x ] ch )
5 2 3 4 3imtr4g
 |-  ( ph -> ( y e. { x | ps } -> y e. { x | ch } ) )
6 5 ssrdv
 |-  ( ph -> { x | ps } C_ { x | ch } )