Metamath Proof Explorer


Theorem ss2abdvOLD

Description: Obsolete version of ss2abdv as of 28-Jun-2024. (Contributed by NM, 29-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ss2abdvOLD.1
|- ( ph -> ( ps -> ch ) )
Assertion ss2abdvOLD
|- ( ph -> { x | ps } C_ { x | ch } )

Proof

Step Hyp Ref Expression
1 ss2abdvOLD.1
 |-  ( ph -> ( ps -> ch ) )
2 1 alrimiv
 |-  ( ph -> A. x ( ps -> ch ) )
3 ss2ab
 |-  ( { x | ps } C_ { x | ch } <-> A. x ( ps -> ch ) )
4 2 3 sylibr
 |-  ( ph -> { x | ps } C_ { x | ch } )