Metamath Proof Explorer


Theorem ss2abi

Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995) Avoid ax-8 , ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Hypothesis ss2abi.1
|- ( ph -> ps )
Assertion ss2abi
|- { x | ph } C_ { x | ps }

Proof

Step Hyp Ref Expression
1 ss2abi.1
 |-  ( ph -> ps )
2 tru
 |-  T.
3 1 a1i
 |-  ( T. -> ( ph -> ps ) )
4 3 ss2abdv
 |-  ( T. -> { x | ph } C_ { x | ps } )
5 2 4 ax-mp
 |-  { x | ph } C_ { x | ps }