Metamath Proof Explorer
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995) Avoid ax-8 , ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)
|
|
Ref |
Expression |
|
Hypothesis |
ss2abi.1 |
|- ( ph -> ps ) |
|
Assertion |
ss2abi |
|- { x | ph } C_ { x | ps } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ss2abi.1 |
|- ( ph -> ps ) |
2 |
|
tru |
|- T. |
3 |
1
|
a1i |
|- ( T. -> ( ph -> ps ) ) |
4 |
3
|
ss2abdv |
|- ( T. -> { x | ph } C_ { x | ps } ) |
5 |
2 4
|
ax-mp |
|- { x | ph } C_ { x | ps } |