Metamath Proof Explorer


Theorem ss2rabdf

Description: Deduction of restricted abstraction subclass from implication. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses ss2rabdf.1
|- F/ x ph
ss2rabdf.2
|- ( ( ph /\ x e. A ) -> ( ps -> ch ) )
Assertion ss2rabdf
|- ( ph -> { x e. A | ps } C_ { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 ss2rabdf.1
 |-  F/ x ph
2 ss2rabdf.2
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
3 2 ex
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
4 1 3 ralrimi
 |-  ( ph -> A. x e. A ( ps -> ch ) )
5 ss2rab
 |-  ( { x e. A | ps } C_ { x e. A | ch } <-> A. x e. A ( ps -> ch ) )
6 4 5 sylibr
 |-  ( ph -> { x e. A | ps } C_ { x e. A | ch } )