Description: Deduction of restricted abstraction subclass from implication. (Contributed by Glauco Siliprandi, 21-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ss2rabdf.1 | |- F/ x ph |
|
ss2rabdf.2 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
||
Assertion | ss2rabdf | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdf.1 | |- F/ x ph |
|
2 | ss2rabdf.2 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
3 | 2 | ex | |- ( ph -> ( x e. A -> ( ps -> ch ) ) ) |
4 | 1 3 | ralrimi | |- ( ph -> A. x e. A ( ps -> ch ) ) |
5 | ss2rab | |- ( { x e. A | ps } C_ { x e. A | ch } <-> A. x e. A ( ps -> ch ) ) |
|
6 | 4 5 | sylibr | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |