Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ss2rabdv.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
| Assertion | ss2rabdv | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
| 2 | 1 | ralrimiva | |- ( ph -> A. x e. A ( ps -> ch ) ) |
| 3 | ss2rab | |- ( { x e. A | ps } C_ { x e. A | ch } <-> A. x e. A ( ps -> ch ) ) |
|
| 4 | 2 3 | sylibr | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |