Metamath Proof Explorer


Theorem ss2rabdv

Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006) Avoid axioms. (Revised by TM, 1-Feb-2026)

Ref Expression
Hypothesis ss2rabdv.1
|- ( ( ph /\ x e. A ) -> ( ps -> ch ) )
Assertion ss2rabdv
|- ( ph -> { x e. A | ps } C_ { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 ss2rabdv.1
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
2 1 imdistanda
 |-  ( ph -> ( ( x e. A /\ ps ) -> ( x e. A /\ ch ) ) )
3 2 ss2abdv
 |-  ( ph -> { x | ( x e. A /\ ps ) } C_ { x | ( x e. A /\ ch ) } )
4 df-rab
 |-  { x e. A | ps } = { x | ( x e. A /\ ps ) }
5 df-rab
 |-  { x e. A | ch } = { x | ( x e. A /\ ch ) }
6 3 4 5 3sstr4g
 |-  ( ph -> { x e. A | ps } C_ { x e. A | ch } )