Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006) Avoid axioms. (Revised by TM, 1-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ss2rabdv.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
| Assertion | ss2rabdv | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
| 2 | 1 | imdistanda | |- ( ph -> ( ( x e. A /\ ps ) -> ( x e. A /\ ch ) ) ) |
| 3 | 2 | ss2abdv | |- ( ph -> { x | ( x e. A /\ ps ) } C_ { x | ( x e. A /\ ch ) } ) |
| 4 | df-rab | |- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
|
| 5 | df-rab | |- { x e. A | ch } = { x | ( x e. A /\ ch ) } |
|
| 6 | 3 4 5 | 3sstr4g | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |