Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | ssab | |- ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2 | |- { x | x e. A } = A |
|
2 | 1 | sseq1i | |- ( { x | x e. A } C_ { x | ph } <-> A C_ { x | ph } ) |
3 | ss2ab | |- ( { x | x e. A } C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |
|
4 | 2 3 | bitr3i | |- ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |