Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssab | |- ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid2 | |- { x | x e. A } = A |
|
| 2 | 1 | sseq1i | |- ( { x | x e. A } C_ { x | ph } <-> A C_ { x | ph } ) |
| 3 | ss2ab | |- ( { x | x e. A } C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |
|
| 4 | 2 3 | bitr3i | |- ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |