Metamath Proof Explorer


Theorem ssabral

Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006)

Ref Expression
Assertion ssabral
|- ( A C_ { x | ph } <-> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 ssab
 |-  ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) )
2 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
3 1 2 bitr4i
 |-  ( A C_ { x | ph } <-> A. x e. A ph )