Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssbrd.1 | |- ( ph -> A C_ B ) |
|
Assertion | ssbrd | |- ( ph -> ( C A D -> C B D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | |- ( ph -> A C_ B ) |
|
2 | 1 | sseld | |- ( ph -> ( <. C , D >. e. A -> <. C , D >. e. B ) ) |
3 | df-br | |- ( C A D <-> <. C , D >. e. A ) |
|
4 | df-br | |- ( C B D <-> <. C , D >. e. B ) |
|
5 | 2 3 4 | 3imtr4g | |- ( ph -> ( C A D -> C B D ) ) |