Metamath Proof Explorer


Theorem ssbrd

Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004)

Ref Expression
Hypothesis ssbrd.1
|- ( ph -> A C_ B )
Assertion ssbrd
|- ( ph -> ( C A D -> C B D ) )

Proof

Step Hyp Ref Expression
1 ssbrd.1
 |-  ( ph -> A C_ B )
2 1 sseld
 |-  ( ph -> ( <. C , D >. e. A -> <. C , D >. e. B ) )
3 df-br
 |-  ( C A D <-> <. C , D >. e. A )
4 df-br
 |-  ( C B D <-> <. C , D >. e. B )
5 2 3 4 3imtr4g
 |-  ( ph -> ( C A D -> C B D ) )