| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssc2.1 |
|- ( ph -> H Fn ( S X. S ) ) |
| 2 |
|
ssc2.2 |
|- ( ph -> H C_cat J ) |
| 3 |
|
ssc2.3 |
|- ( ph -> X e. S ) |
| 4 |
|
ssc2.4 |
|- ( ph -> Y e. S ) |
| 5 |
|
eqidd |
|- ( ph -> dom dom J = dom dom J ) |
| 6 |
2 5
|
sscfn2 |
|- ( ph -> J Fn ( dom dom J X. dom dom J ) ) |
| 7 |
|
sscrel |
|- Rel C_cat |
| 8 |
7
|
brrelex2i |
|- ( H C_cat J -> J e. _V ) |
| 9 |
|
dmexg |
|- ( J e. _V -> dom J e. _V ) |
| 10 |
|
dmexg |
|- ( dom J e. _V -> dom dom J e. _V ) |
| 11 |
2 8 9 10
|
4syl |
|- ( ph -> dom dom J e. _V ) |
| 12 |
1 6 11
|
isssc |
|- ( ph -> ( H C_cat J <-> ( S C_ dom dom J /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) |
| 13 |
2 12
|
mpbid |
|- ( ph -> ( S C_ dom dom J /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) |
| 14 |
13
|
simprd |
|- ( ph -> A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) |
| 15 |
|
oveq1 |
|- ( x = X -> ( x H y ) = ( X H y ) ) |
| 16 |
|
oveq1 |
|- ( x = X -> ( x J y ) = ( X J y ) ) |
| 17 |
15 16
|
sseq12d |
|- ( x = X -> ( ( x H y ) C_ ( x J y ) <-> ( X H y ) C_ ( X J y ) ) ) |
| 18 |
|
oveq2 |
|- ( y = Y -> ( X H y ) = ( X H Y ) ) |
| 19 |
|
oveq2 |
|- ( y = Y -> ( X J y ) = ( X J Y ) ) |
| 20 |
18 19
|
sseq12d |
|- ( y = Y -> ( ( X H y ) C_ ( X J y ) <-> ( X H Y ) C_ ( X J Y ) ) ) |
| 21 |
17 20
|
rspc2va |
|- ( ( ( X e. S /\ Y e. S ) /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) -> ( X H Y ) C_ ( X J Y ) ) |
| 22 |
3 4 14 21
|
syl21anc |
|- ( ph -> ( X H Y ) C_ ( X J Y ) ) |