Step |
Hyp |
Ref |
Expression |
1 |
|
sscfn1.1 |
|- ( ph -> H C_cat J ) |
2 |
|
sscfn1.2 |
|- ( ph -> S = dom dom H ) |
3 |
|
brssc |
|- ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
4 |
1 3
|
sylib |
|- ( ph -> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
5 |
|
ixpfn |
|- ( H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H Fn ( s X. s ) ) |
6 |
|
simpr |
|- ( ( ph /\ H Fn ( s X. s ) ) -> H Fn ( s X. s ) ) |
7 |
2
|
adantr |
|- ( ( ph /\ H Fn ( s X. s ) ) -> S = dom dom H ) |
8 |
|
fndm |
|- ( H Fn ( s X. s ) -> dom H = ( s X. s ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ H Fn ( s X. s ) ) -> dom H = ( s X. s ) ) |
10 |
9
|
dmeqd |
|- ( ( ph /\ H Fn ( s X. s ) ) -> dom dom H = dom ( s X. s ) ) |
11 |
|
dmxpid |
|- dom ( s X. s ) = s |
12 |
10 11
|
eqtrdi |
|- ( ( ph /\ H Fn ( s X. s ) ) -> dom dom H = s ) |
13 |
7 12
|
eqtr2d |
|- ( ( ph /\ H Fn ( s X. s ) ) -> s = S ) |
14 |
13
|
sqxpeqd |
|- ( ( ph /\ H Fn ( s X. s ) ) -> ( s X. s ) = ( S X. S ) ) |
15 |
14
|
fneq2d |
|- ( ( ph /\ H Fn ( s X. s ) ) -> ( H Fn ( s X. s ) <-> H Fn ( S X. S ) ) ) |
16 |
6 15
|
mpbid |
|- ( ( ph /\ H Fn ( s X. s ) ) -> H Fn ( S X. S ) ) |
17 |
16
|
ex |
|- ( ph -> ( H Fn ( s X. s ) -> H Fn ( S X. S ) ) ) |
18 |
5 17
|
syl5 |
|- ( ph -> ( H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H Fn ( S X. S ) ) ) |
19 |
18
|
rexlimdvw |
|- ( ph -> ( E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H Fn ( S X. S ) ) ) |
20 |
19
|
adantld |
|- ( ph -> ( ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> H Fn ( S X. S ) ) ) |
21 |
20
|
exlimdv |
|- ( ph -> ( E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> H Fn ( S X. S ) ) ) |
22 |
4 21
|
mpd |
|- ( ph -> H Fn ( S X. S ) ) |