| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sscfn1.1 |
|- ( ph -> H C_cat J ) |
| 2 |
|
sscfn2.2 |
|- ( ph -> T = dom dom J ) |
| 3 |
|
brssc |
|- ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. y e. ~P t H e. X_ x e. ( y X. y ) ~P ( J ` x ) ) ) |
| 4 |
1 3
|
sylib |
|- ( ph -> E. t ( J Fn ( t X. t ) /\ E. y e. ~P t H e. X_ x e. ( y X. y ) ~P ( J ` x ) ) ) |
| 5 |
|
simpr |
|- ( ( ph /\ J Fn ( t X. t ) ) -> J Fn ( t X. t ) ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ J Fn ( t X. t ) ) -> T = dom dom J ) |
| 7 |
|
fndm |
|- ( J Fn ( t X. t ) -> dom J = ( t X. t ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ J Fn ( t X. t ) ) -> dom J = ( t X. t ) ) |
| 9 |
8
|
dmeqd |
|- ( ( ph /\ J Fn ( t X. t ) ) -> dom dom J = dom ( t X. t ) ) |
| 10 |
|
dmxpid |
|- dom ( t X. t ) = t |
| 11 |
9 10
|
eqtrdi |
|- ( ( ph /\ J Fn ( t X. t ) ) -> dom dom J = t ) |
| 12 |
6 11
|
eqtr2d |
|- ( ( ph /\ J Fn ( t X. t ) ) -> t = T ) |
| 13 |
12
|
sqxpeqd |
|- ( ( ph /\ J Fn ( t X. t ) ) -> ( t X. t ) = ( T X. T ) ) |
| 14 |
13
|
fneq2d |
|- ( ( ph /\ J Fn ( t X. t ) ) -> ( J Fn ( t X. t ) <-> J Fn ( T X. T ) ) ) |
| 15 |
5 14
|
mpbid |
|- ( ( ph /\ J Fn ( t X. t ) ) -> J Fn ( T X. T ) ) |
| 16 |
15
|
ex |
|- ( ph -> ( J Fn ( t X. t ) -> J Fn ( T X. T ) ) ) |
| 17 |
16
|
adantrd |
|- ( ph -> ( ( J Fn ( t X. t ) /\ E. y e. ~P t H e. X_ x e. ( y X. y ) ~P ( J ` x ) ) -> J Fn ( T X. T ) ) ) |
| 18 |
17
|
exlimdv |
|- ( ph -> ( E. t ( J Fn ( t X. t ) /\ E. y e. ~P t H e. X_ x e. ( y X. y ) ~P ( J ` x ) ) -> J Fn ( T X. T ) ) ) |
| 19 |
4 18
|
mpd |
|- ( ph -> J Fn ( T X. T ) ) |