Metamath Proof Explorer


Theorem sscid

Description: The subcategory subset relation is reflexive. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion sscid
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> H C_cat H )

Proof

Step Hyp Ref Expression
1 fnresdm
 |-  ( H Fn ( S X. S ) -> ( H |` ( S X. S ) ) = H )
2 1 adantr
 |-  ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( S X. S ) ) = H )
3 sscres
 |-  ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( S X. S ) ) C_cat H )
4 2 3 eqbrtrrd
 |-  ( ( H Fn ( S X. S ) /\ S e. V ) -> H C_cat H )