Description: The subcategory subset relation is reflexive. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sscid | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> H C_cat H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm | |- ( H Fn ( S X. S ) -> ( H |` ( S X. S ) ) = H ) |
|
2 | 1 | adantr | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( S X. S ) ) = H ) |
3 | sscres | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( S X. S ) ) C_cat H ) |
|
4 | 2 3 | eqbrtrrd | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> H C_cat H ) |