Metamath Proof Explorer


Theorem sscls

Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion sscls
|- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 ssintub
 |-  S C_ |^| { x e. ( Clsd ` J ) | S C_ x }
3 1 clsval
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } )
4 2 3 sseqtrrid
 |-  ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) )