Description: Contraposition law for subsets. Exercise 15 of TakeutiZaring p. 22. (Contributed by NM, 22-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | sscon | |- ( A C_ B -> ( C \ B ) C_ ( C \ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
2 | 1 | con3d | |- ( A C_ B -> ( -. x e. B -> -. x e. A ) ) |
3 | 2 | anim2d | |- ( A C_ B -> ( ( x e. C /\ -. x e. B ) -> ( x e. C /\ -. x e. A ) ) ) |
4 | eldif | |- ( x e. ( C \ B ) <-> ( x e. C /\ -. x e. B ) ) |
|
5 | eldif | |- ( x e. ( C \ A ) <-> ( x e. C /\ -. x e. A ) ) |
|
6 | 3 4 5 | 3imtr4g | |- ( A C_ B -> ( x e. ( C \ B ) -> x e. ( C \ A ) ) ) |
7 | 6 | ssrdv | |- ( A C_ B -> ( C \ B ) C_ ( C \ A ) ) |