Step |
Hyp |
Ref |
Expression |
1 |
|
sscon |
|- ( A C_ B -> ( C \ B ) C_ ( C \ A ) ) |
2 |
|
sscon |
|- ( ( C \ B ) C_ ( C \ A ) -> ( C \ ( C \ A ) ) C_ ( C \ ( C \ B ) ) ) |
3 |
|
dfss4 |
|- ( A C_ C <-> ( C \ ( C \ A ) ) = A ) |
4 |
3
|
biimpi |
|- ( A C_ C -> ( C \ ( C \ A ) ) = A ) |
5 |
4
|
adantr |
|- ( ( A C_ C /\ B C_ C ) -> ( C \ ( C \ A ) ) = A ) |
6 |
|
dfss4 |
|- ( B C_ C <-> ( C \ ( C \ B ) ) = B ) |
7 |
6
|
biimpi |
|- ( B C_ C -> ( C \ ( C \ B ) ) = B ) |
8 |
7
|
adantl |
|- ( ( A C_ C /\ B C_ C ) -> ( C \ ( C \ B ) ) = B ) |
9 |
5 8
|
sseq12d |
|- ( ( A C_ C /\ B C_ C ) -> ( ( C \ ( C \ A ) ) C_ ( C \ ( C \ B ) ) <-> A C_ B ) ) |
10 |
2 9
|
syl5ib |
|- ( ( A C_ C /\ B C_ C ) -> ( ( C \ B ) C_ ( C \ A ) -> A C_ B ) ) |
11 |
1 10
|
impbid2 |
|- ( ( A C_ C /\ B C_ C ) -> ( A C_ B <-> ( C \ B ) C_ ( C \ A ) ) ) |