| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sscon |  |-  ( A C_ B -> ( C \ B ) C_ ( C \ A ) ) | 
						
							| 2 |  | sscon |  |-  ( ( C \ B ) C_ ( C \ A ) -> ( C \ ( C \ A ) ) C_ ( C \ ( C \ B ) ) ) | 
						
							| 3 |  | dfss4 |  |-  ( A C_ C <-> ( C \ ( C \ A ) ) = A ) | 
						
							| 4 | 3 | biimpi |  |-  ( A C_ C -> ( C \ ( C \ A ) ) = A ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A C_ C /\ B C_ C ) -> ( C \ ( C \ A ) ) = A ) | 
						
							| 6 |  | dfss4 |  |-  ( B C_ C <-> ( C \ ( C \ B ) ) = B ) | 
						
							| 7 | 6 | biimpi |  |-  ( B C_ C -> ( C \ ( C \ B ) ) = B ) | 
						
							| 8 | 7 | adantl |  |-  ( ( A C_ C /\ B C_ C ) -> ( C \ ( C \ B ) ) = B ) | 
						
							| 9 | 5 8 | sseq12d |  |-  ( ( A C_ C /\ B C_ C ) -> ( ( C \ ( C \ A ) ) C_ ( C \ ( C \ B ) ) <-> A C_ B ) ) | 
						
							| 10 | 2 9 | imbitrid |  |-  ( ( A C_ C /\ B C_ C ) -> ( ( C \ B ) C_ ( C \ A ) -> A C_ B ) ) | 
						
							| 11 | 1 10 | impbid2 |  |-  ( ( A C_ C /\ B C_ C ) -> ( A C_ B <-> ( C \ B ) C_ ( C \ A ) ) ) |