| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inss1 |
|- ( S i^i T ) C_ S |
| 2 |
|
simpl |
|- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> x e. ( S i^i T ) ) |
| 3 |
2
|
elin2d |
|- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> x e. T ) |
| 4 |
|
simpr |
|- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> y e. ( S i^i T ) ) |
| 5 |
4
|
elin2d |
|- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> y e. T ) |
| 6 |
3 5
|
ovresd |
|- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> ( x ( H |` ( T X. T ) ) y ) = ( x H y ) ) |
| 7 |
|
eqimss |
|- ( ( x ( H |` ( T X. T ) ) y ) = ( x H y ) -> ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) ) |
| 8 |
6 7
|
syl |
|- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) ) |
| 9 |
8
|
rgen2 |
|- A. x e. ( S i^i T ) A. y e. ( S i^i T ) ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) |
| 10 |
1 9
|
pm3.2i |
|- ( ( S i^i T ) C_ S /\ A. x e. ( S i^i T ) A. y e. ( S i^i T ) ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) ) |
| 11 |
|
simpl |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> H Fn ( S X. S ) ) |
| 12 |
|
inss1 |
|- ( ( S X. S ) i^i ( T X. T ) ) C_ ( S X. S ) |
| 13 |
|
fnssres |
|- ( ( H Fn ( S X. S ) /\ ( ( S X. S ) i^i ( T X. T ) ) C_ ( S X. S ) ) -> ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) Fn ( ( S X. S ) i^i ( T X. T ) ) ) |
| 14 |
11 12 13
|
sylancl |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) Fn ( ( S X. S ) i^i ( T X. T ) ) ) |
| 15 |
|
resres |
|- ( ( H |` ( S X. S ) ) |` ( T X. T ) ) = ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) |
| 16 |
|
fnresdm |
|- ( H Fn ( S X. S ) -> ( H |` ( S X. S ) ) = H ) |
| 17 |
16
|
adantr |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( S X. S ) ) = H ) |
| 18 |
17
|
reseq1d |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( ( H |` ( S X. S ) ) |` ( T X. T ) ) = ( H |` ( T X. T ) ) ) |
| 19 |
15 18
|
eqtr3id |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) = ( H |` ( T X. T ) ) ) |
| 20 |
|
inxp |
|- ( ( S X. S ) i^i ( T X. T ) ) = ( ( S i^i T ) X. ( S i^i T ) ) |
| 21 |
20
|
a1i |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( ( S X. S ) i^i ( T X. T ) ) = ( ( S i^i T ) X. ( S i^i T ) ) ) |
| 22 |
19 21
|
fneq12d |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) Fn ( ( S X. S ) i^i ( T X. T ) ) <-> ( H |` ( T X. T ) ) Fn ( ( S i^i T ) X. ( S i^i T ) ) ) ) |
| 23 |
14 22
|
mpbid |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( T X. T ) ) Fn ( ( S i^i T ) X. ( S i^i T ) ) ) |
| 24 |
|
simpr |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> S e. V ) |
| 25 |
23 11 24
|
isssc |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( ( H |` ( T X. T ) ) C_cat H <-> ( ( S i^i T ) C_ S /\ A. x e. ( S i^i T ) A. y e. ( S i^i T ) ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) ) ) ) |
| 26 |
10 25
|
mpbiri |
|- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( T X. T ) ) C_cat H ) |