Description: Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ssct | |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex | |- ( B ~<_ _om -> B e. _V ) |
|
2 | ssdomg | |- ( B e. _V -> ( A C_ B -> A ~<_ B ) ) |
|
3 | 1 2 | syl | |- ( B ~<_ _om -> ( A C_ B -> A ~<_ B ) ) |
4 | 3 | impcom | |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ B ) |
5 | domtr | |- ( ( A ~<_ B /\ B ~<_ _om ) -> A ~<_ _om ) |
|
6 | 4 5 | sylancom | |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ _om ) |